
Parallel implementation of electronic structure energy, gradient,
and Hessian calculations

V. Lotrich, N. Flocke, M. Ponton, A. D. Yau,a� A. Perera, E. Deumens,b� and R. J. Bartlett
Aces QC, Gainesville, Florida 32605, USA

�Received 15 February 2007; accepted 15 April 2008; published online 20 May 2008�

ACES III is a newly written program in which the computationally demanding components of the
computational chemistry code ACES II �J. F. Stanton et al., Int. J. Quantum Chem. 526, 879 �1992�;
�ACES II program system, University of Florida, 1994� have been redesigned and implemented in
parallel. The high-level algorithms include Hartree–Fock �HF� self-consistent field �SCF�,
second-order many-body perturbation theory �MBPT�2�� energy, gradient, and Hessian, and coupled
cluster singles, doubles, and perturbative triples �CCSD�T�� energy and gradient. For SCF,
MBPT�2�, and CCSD�T�, both restricted HF and unrestricted HF reference wave functions are
available. For MBPT�2� gradients and Hessians, a restricted open-shell HF reference is also
supported. The methods are programed in a special language designed for the parallelization project.
The language is called super instruction assembly language �SIAL�. The design uses an extreme
form of object-oriented programing. All compute intensive operations, such as tensor contractions
and diagonalizations, all communication operations, and all input-output operations are handled by
a parallel program written in C and FORTRAN 77. This parallel program, called the super instruction
processor �SIP�, interprets and executes the SIAL program. By separating the algorithmic
complexity �in SIAL� from the complexities of execution on computer hardware �in SIP�, a software
system is created that allows for very effective optimization and tuning on different hardware
architectures with quite manageable effort. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2920482�

I. INTRODUCTION

The methods of computational chemistry have become
standard tools used on a daily basis by the practicing chemist
rather than special tools with use limited to theoretical chem-
ists; especially, the self-consistent field �SCF� method, the
computationally similar density functional theory �DFT�
method, are widely used due to their effectiveness of quality
of results in relation to the cost of obtaining them. There are
also available very efficient parallel implementations for
these methods. The more traditional methods for describing
correlation effects in electronic structure theory, such as
second-order many-body perturbation theory �MBPT�2�� �if
the Møller–Plesset partitioning is used, this is also known as
the second-order Møller–Plesset �MP2��, coupled cluster
theory at the singles and doubles level, CCSD, CCSD�T�,
and higher orders,1,2 are computationally much more de-
manding. As high-level CC theory results represent the best
reference results today,3,4 it is critical to have efficient paral-
lel implementations of these methods. We review the work
on parallelization in this field in Sec. III.

ACES I was the first general purpose program to provide
CC results. ACES I was developed from 1977 to 1989 from
programs written by Bartlett and Purvis to perform MBPT,
CC calculations, and some analytical gradient calculations.
They initially used sparse matrix algorithms in which no
integrals below a threshold were ever stored or processed, as

that was thought to be a better large-molecule strategy. How-
ever, as vector processors like the FPS 164 emerged, the
threshold based strategy was inconsistent with very fast
vector processing.

ACES II �Refs. 5 and 6� was written starting in 1990, and
in contrast to ACES I, was built upon fully exploiting Abe-
lian point-group symmetry through D2h using the algorithms
of Stanton and co-workers.7,8 It was directed at the CRAY
machines of the time and achieved excellent vector perfor-
mance. ACES II further added the general treatment of CC
analytical gradients, CC density matrices, and EOM-CC ex-
cited, ionized, and electron attached states. Since then, the
two developments of ACES II, the University of Florida
form9,5,6 and the Mainz–Austin–Budapest form,10 have pro-
vided complimentary and unique treatments of a variety of
properties.

In this paper, we report on the design and implementa-
tion of the methods listed in Table I for efficient execution on
parallel computer systems with various architectures. Learn-
ing from the experience of those who have implemented
these methods in parallel before, as will be discussed in Sec.
III, we imposed some design requirements from the outset of
our project. Instead of making the computational details,
such as the ratio of processor speed over communication
speed, subordinate to the theoretical chemistry and algorith-
mic considerations, as some have done, or of making the
theoretical chemistry subordinate to computer science and
engineering issues, as others have done, we chose to give
equal weight to both concerns. To allow development to take

a�Present addressed: HPTi, Aberdeen, MD.
b�Electronic mail: deumens@qtp.ufl.edu.

THE JOURNAL OF CHEMICAL PHYSICS 128, 194104 �2008�

0021-9606/2008/128�19�/194104/15/$23.00 © 2008 American Institute of Physics128, 194104-1

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2920482
http://dx.doi.org/10.1063/1.2920482
http://dx.doi.org/10.1063/1.2920482

place in an organized fashion within such constraints, we
formulated a precise separation of the two aspects and de-
fined an interface and protocol for the two groups to interact.

The basic idea of the division of expertise is that, for
floating point intensive applications like the ones under con-
sideration, one should think in terms of blocks of numbers
instead of individual numbers. Modern computer hardware
has a hierarchy of speeds versus size, ranging from very high
speeds for small amounts of data inside processors down to
many orders of magnitude slower access to huge amounts of
data on disk subsystems. Individual numbers are very ineffi-
ciently processed across this hierarchy. However, for each
parallel computer architecture, a block size that can be pro-
cessed much more efficiently can be found. We call these
blocks super numbers and the basic operations on them su-
per instructions.

In Sec. II, we describe some of the details of the math-
ematical and algorithmic aspects of the computational chem-
istry methods in the example of CCSD energies, as it exhib-
its all of the algorithmic complexity of gradient and Hessian
computations as well. In particular, the data types and pat-
terns are analogous between the algorithms developed for all
methods beyond CCSD. Then, in Sec. III, we present a brief
review of parallel implementations of various CC methods
that have been published. We summarize the innovative al-
gorithms and the computing technology employed and from
that the motivation for our approach is derived. In Sec. IV,
we describe the details of the parallel implementation of the
computational chemistry methods in ACES III and of the super
instruction architecture �SIA�. In Sec. V, we show some per-
formance results obtained with ACES III.

II. THEORETICAL METHODS

Although we have implemented a variety of commonly
used open-and closed-shell ab initio methods into ACES III

�see Table I�, the complexity involved in the parallel imple-
mentation of these methods can be satisfactorily illustrated
by considering the complete calculation of the CCSD energy.
We will therefore give a brief summary of the CCSD method
with emphasis on the data required to perform the calcula-
tion.

So far, we have only considered CCSD methods based
on a Hartree–Fock �restricted HF �RHF� and unrestricted HF
�UHF�� reference wave function ��0�= ��HF� which simpli-
fies the gradient and Hessian computation but does not affect
the present discussion. The coupled cluster method expresses
the exact wave function of a molecule as ���=eT��0�, where

the operator T creates all N-tuple excitations of the reference
function ��0�, N being the number of electrons of the mol-
ecule. The many-body Schrödinger equation used to compute
the stationary state energies and wave functions can then be
written very simply as

H��� = HeT��0� = EeT��0� . �1�

Acting from the left with the operator e−T and projecting
against the reference function ��0� leads to the expression
for the energy

��0�e−THeT��0� = E , �2�

whereas projection against an excited determinant ��ij¯
ab¯�

leads to the equations which determine the CC amplitudes.

��ij¯
ab¯�e−THeT��0� = 0. �3�

In Eqs. �2� and �3�, expansion of the exponential leads to the
terminating expansion,

e−THeT = H + �H,T� +
1

2
��H,T�,T� +

1

3!
���H,T�,T�,T�

+
1

4!
�����H,T�,T�,T�,�T� , �4�

where we use the commutator �H ,T�=HT−TH. Since the
Hamiltonian H is a two-particle quantity, the amplitude equa-
tions �Eq. �3�� are at most quartic in any Tn. Note that up to
this point, we have made no restriction on T, restricting the
cluster operator T to singles and doubles excitations leads to
the CCSD equations, which are quadratic in the two-particle
cluster operator T2, cubic in T2T1T1, and quartic in the one-
particle cluster operator T1. These equations �the CCSD en-
ergy and amplitude equations� are well known4,7,8 and will
not be repeated here.

In order to solve Eqs. �2� and �3�, once the zeroth-order
wave function is determined, the two-electron integrals must
be transformed from the atomic orbital �AO� to the molecu-
lar orbital �MO� basis using the transformation coefficients
determined in the SCF. The two-electron transformation can
be written as

Vrs
pq = C�

p C�
qCr

�Cs
�V��

��, �5�

where p, q, r, and s are MO labels and �, �, �, and � are AO
labels, and repeated indices are summed over.

Determination of the CCSD energy and gradient consists
of five steps: �1� Solve the Hartree–Fock equations. �2� Per-
form the two-electron integral transformation. �3� Solve the

TABLE I. Overview of capabilities implemented in ACES III. We do not have an efficient parallel ROHF SCF
yet, but all correlated methods can use any reference, including Brueckner orbitals. The capability to drop core
orbitals is also implemented.

Method Energy Gradient Hessian

SCF RHF, UHF RHF, UHF, ROHF RHF, UHF, ROHF
MBPT�2� RHF, UHF, ROHF RHF, UHF, ROHF RHF, UHF, ROHF
LinCCSD RHF, UHF, ROHF RHF, UHF, ROHF
CCSD RHF, UHF, ROHF RHF, UHF, ROHF
CCSD�T� RHF, UHF, ROHF RHF, UHF, ROHF

194104-2 Lotrich et al. J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

CCSD equations to determine T amplitudes, from which the
energy can be constructed. �4� Solve the complementary �
equations to provide analytical gradients and density
matrices.11 �5� Construct the gradient using T, �, and the
one-electron and two-electron Hamiltonian matrix
elements.12

We now will discuss the data requirements and compu-
tational cost associated with each of these steps.

A. Hartree–Fock method

The Hartree–Fock method approximates the wave func-
tion as an antisymmetrized product of single particle func-
tions which can be determined from a variational one-
particle equation. Only one-particle �two-dimensional array�
quantities and two-electron integrals �four-dimensional ar-
rays� need to be evaluated. If the two-electron integrals are
recomputed each time they are needed, then no complete
two-particle quantities need to be stored, but only a portion.
For a computation involving 500 to 1000 basis functions,
each one-particle array requires 2–32 Mbytes, respectively.
On modern computers, this amount of data easily fits into
memory so that disk usage can be completely avoided in the
SCF computation for all but very large molecules on very
small computer systems.

B. Two-electron integral transformation

In the CCSD computation, all of the two-electron inte-
grals are used but not necessarily in transformed form. The
computation is usually done in four steps with one index
being transformed at a time so that the computational cost is
on the order of N5, where N is the number of basis functions.
More importantly, even if the two-electron integrals are not
stored but recomputed as needed, the data that need to be
stored is on the order of N4. For example, if the number of
basis functions is 500, then the transformed integrals require
about 50 Gbytes of disk or memory and 1000 basis functions
requires 900 Gbytes. This is a large amount of data to be
stored on most computers available today and thus usually
requires that the integrals be stored on disk, unlike the SCF
where the entire computation can be done in memory.

C. Coupled cluster method

The equations that define the CCSD amplitudes8 can be
derived from Eq. �3� but we will not reproduce them here. Of
significance to this discussion are the extra storage require-
ments above and beyond the two-electron integrals and the
computational cost. The singles and doubles amplitude stor-
age is small compared to the storage of the transformed in-
tegrals. For the perturbative triples,13,14 the six-index tijk

abc am-
plitudes are not stored. For 500 and 1000 basis functions and
a ratio of 5 /1 of virtual to occupied orbitals, the doubles
amplitudes require 12.8 and 204.8 Gbytes of storage, respec-
tively, which is a manageable amount. The triples, if stored,
would require 50 000 and 200 000 times this.

The CCSD implementation includes the direct inversion
in the iterative subspace �DIIS� method15 for accelerating the

convergence of the amplitudes. Such convergence accelera-
tion requires storage of a number of amplitude histories, in-
creasing the data storage requirement.

D. Coupled cluster gradients

The CC functional4 can be written as

E = �0��1 + ��e−THeT�0� , �6�

with � operator similar to the T operator

� = �
ia

�a
i i†a + �

ijab

�ab
ij i†j†ab + ¯ . �7�

In these equations, we use the convention that i , j ,k , . . ., de-
note indices that range over occupied orbitals and a ,b ,c , . . .,
range over virtual orbitals. Imposing stationarity with respect
to �n provides the equations for T, while imposing stationar-
ity with respect to T delivers �. The � equation is linear,
unlike the equation for T and its origin lies in the interchange
theorem,3,16 and without it, analytical gradients could not be
constructed for CC methods. � also permits the definition of
CC density matrices

��PDQ� = �0��e−Tp†qeT�0� , �8�

	�pq,rs� = �0��e−Tp†q†rseT�0� �9�

that are critical for properties. Unlike conventional density
matrices, these also exist for methods like CCSD�T� that
have no wave function form.

The other elements required for CC gradients are the
integral derivatives and the derivatives of the MO coeffi-
cients c�p. The latter are given by

�c�p

�

= �

q

Uqp

 c�q. �10�

The MBPT or CC gradient with respect to a nuclear coordi-
nate
 can be written as

�E

�

= �

ab

Dabfab
�
� + �

ij

Dijf ij
�
� + �

pqrs

	�pq,rs��pq��rs�

− 2�
pq

Ipq� Upq

 , �11�

where the definition of all quantities can be found in Ref. 17.
The superscript
 indicates that an integral derivative is to be
taken and transformed to the MO basis whereas the super-
script �
� indicates that the derivative of the Hartree–Fock
density is to be omitted. In the case of the CC gradient the
two-particle density 	�pq ,rs� depends on the CC amplitudes
T and on a similar set called � coefficients. The � coeffi-
cients are obtained by solving a linear set of equations simi-
lar to the CC equations for T amplitudes. The CPHF coeffi-
cients Upq

 only appear in the last term in Eq. �11�. This is a
valid equation but it can be simplified if the invariance with
respect to orbital rotations within the occupied and virtual
spaces is used. This allows the occupied-occupied and
virtual-virtual blocks of the CPHF coefficients to be written
as − 1

2Sij

 and − 1

2Sab

 , respectively, where Sij

 is the derivative
of the overlap integral transformed to the MO basis. Eq. �11�

194104-3 Parallel implementation of electronic structure energy J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

still contains the virtual-occupied block of the CPHF coeffi-
cients but this block can be removed using the interchange
theorem again.3,16 This procedure was later called the
Z-vector method17 for CPHF. The final equation for the gra-
dient

�E

�

= �

pq

Dpqfpq
�
� + �

pqrs

	�pq,rs��pq��rs�
 + �
pq

IpqSpq

 �12�

does not contain the CPHF coefficients but does contain the
perturbation-independent occupied-virtual block of the re-
laxed density Dai which must be constructed. The one par-
ticle intermediates Ipq and components of the reduced density
matrix Dab, Dij, and 	�pq ,rs� are defined in Ref. 21

Alternatively, if we consider differentiating the MBPT or
CC, energy we get

�E

�

= �

ab

Dab
�fab

�

+ �

ij

Dij
f ij

�

+ �

pqrs

	�pq,rs�
��pq��rs�

�

.

�13�

Note that all derivatives appearing in Eq. �13� are complete
derivatives and therefore contain the CPHF coefficients Upq

 .
This expression requires that the CPHF coefficients be deter-
mined for each perturbation
 and is not actually imple-
mented. It, however, is a proper starting point to determine
the Hessian.

The MBPT�2� gradient is defined by Eq. �12� if I and
	�pq ,rs� are restricted to second order.12 The second-order
	�pq ,rs� reduces to 	�ab , ij�. The algorithm we have used to
compute the MBPT�2� gradient calculates all contributions
that depend on the integrals with three virtual indices di-
rectly. Two-electron integrals containing four virtual indices
are not needed. The partial two-electron transformation to
obtain all integrals with less than three virtual indices is done
as described in Ref. 12. We have included the transformation
within the program segment that computes the gradient.

The linear-CCSD gradient is very similar to the CCSD
gradient with the following exceptions. First, LinCCSD is a
Hermitian theory so the LinCCSD and � amplitudes are the
same.12 Therefore, no computation of � is required. Since
the CCSD equations are linear, we have chosen to compute
in a direct way all terms which depend on two-electron inte-
grals with three and four virtual indices. Since computation
of the two-particle density requires the transformed integrals
with three virtual indices, we perform a transformation after
the CCSD step to obtain them.

The equations for the perturbative triples energy and gra-
dient can be found in Refs. 2 and 3

Our implementation of the CCSD gradient computation
starts with the the SCF step immediately followed by the
transformation of two-electron integrals involving three vir-
tual indices or less. This step is followed by the two steps
computating the T and � amplitudes, respectively. In the
computation of T and �, we have eliminated, using the stan-
dard textbook technique, the need to perform the two-
electron integral transformation involving four virtual indi-
ces by performing all computations involving these integrals
directly.

As soon as a block of the density is computed, it is used
to compute the corresponding parts of the one-particle inter-
mediates. These intermediates are then contracted with the
one-electron derivative integrals to obtain the contribution to
the gradient. The reduced density is computed a second time
for the two-electron derivative integral part. If a density con-
tribution contains two or fewer virtual indices it is partially
back-transformed to be contracted later with the derivative
integrals. Gradient contributions which contain three virtual
indices are backtransformed to the AO basis immediately
after they are formed and contracted with the derivative in-
tegrals �computed as needed in the AO basis� to form their
contribution to the gradient. The two-particle density array
containing four virtual indices is computed directly and does
not need to be stored.

E. MBPT„2… Hessian

We have considered two different approaches to the
UHF Hessian and thus have written two different programs
which yield identical results. One of these programs derives
the Hessian as the derivative of the MBPT�2� gradient �Eq.
�12��. The other approach directly differentiates the energy
expression twice and then removes the second-order coupled
Hartree–Fock coefficients using the interchange theorem.19

This is equivalent to differentiating Eq. �13� and then remov-
ing the second-order coupled Hartree–Fock coefficients.

Consider the first approach. Differentiating Eq. �12�
leads to one expression for the Hessian that we have imple-
mented. It depends on the derivative of Dai and is only valid
for the set of CPHF equations defined in Eq. �10� with the
occupied-occupied and virtual-virtual blocks of CPHF coef-
ficients given by − 1

2Sij

 and − 1

2Sab

 . This has the consequence

that the derivatives of the Fock matrix are no longer
diagonal.

When we consider differentiating Eq. �13�, we get an
expression that is slightly more complicated but does not
depend on any choice of basis �and therefore on a choice of
CPHF coefficients�. Using the second-order CPHF coeffi-
cients it is convenient at this point to replace the occupied-
occupied and virtual-virtual blocks of the CPHF coefficients
with − 1

2Sij

 and − 1

2Sab

 , respectively. The final equation for the

MBPT�2� Hessian thus obtained can be found in Ref. 18.
This choice of basis also results in the derivatives of the
Fock matrix having off-diagonal components.

III. REVIEW OF PARALLEL IMPLEMENTATIONS

Electronic structure methods have been implemented in
efficient computer programs for a long time.19,20 In the past
two decades, many implementations have exploited parallel-
ism available in modern computer architectures. The litera-
ture is extensive and it is beyond the scope of this section to
provide a review that does justice to all contributions. How-
ever, we do want to provide an overview with sufficient de-
tail to properly position the parallel implementation pre-
sented in this paper. The architecture of our implementation
is strongly influenced by the ideas published in the literature
and by the successes obtained and limitations discovered
from their implementation.

194104-4 Lotrich et al. J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

We can coarsely divide high-performance strategies for
modern computer codes into two approaches: algorithms and
technology. This division is not perfect as there are strong
overlaps, but nevertheless it will help organize the discussion
of the literature.

Implementing any electronic structure theory requires a
significant effort. Because the computations tax available
computer hardware to the fullest, it is important to make the
implementation efficient. However, the wide range in avail-
able hardware architectures has the result that an implemen-
tation that is efficient on one architecture may very well be
very ineffective on another. Thus, any implementor is con-
fronted with the challenge of finding implementations, algo-
rithms and technology, that are both portable and adaptable
to many architectures.

Some groups, lead by the NWChem development
team,21 have developed a sophisticated technology to distrib-
ute and manipulate data on a distributed memory computer
architecture. This technology is implemented in a library
component like global arrays �GA�,22,23 which is used in
NWCHEM,24 and MOLCAS

25 and COLUMBUS.26 Similar tech-
nology is embodied in the distributed data interface27 �DDI�
of GAMESS.29 The design goals of the NWChem team were to
create software that could execute efficiently on massively
parallel systems with a fast interconnect for communication
between processors. This led to the decision to store large
data structures in distributed memory. The GA toolkit then
provides a uniform programing interface for the chemist de-
velopers to use the distributed memory of many different
architectures of distributed memory computer systems. The
developers of GAMESS �Ref. 28� followed a similar reason-
ing, but chose to build a new, simpler interface called DDI
�Ref. 27� rather then use the existing feature-rich GA
toolkit.22,23 However, since the original design, the DDI has
grown in complexity as well, such as with the recent addition
of support for shared memory parallelism.29 The NWChem
developers have added a disk resident array interface30 to
their toolbox. The developers of MPQC �Ref. 31� have
implemented parallelism for the computation of MP2-R12
�Ref. 32� and local MP2 �Ref. 33� energies.

One side effect of the pure distributed memory design is
that problems with larger molecules can only run on large
numbers of processors with fast interconnects. Such com-
puter systems are available, but many research groups have
more ready access to small clusters with 16 to 128 CPUs
with slower interconnects such as 100BT or Gigabit Ether-
net. Several groups, for example Pulay and co-workers34–37

and Szalewicz and co-workers38 and the developers of
TURBOMOLE,39 have opted to implement their algorithms us-
ing the basic PVM or MPI technology, foregoing tools such
as the GA or DDI. They designed their code from the start to
run effectively on smaller clusters of nodes with local disks
and slower inter-node-communication performance. This
leads to the consideration of different algorithms. It allows
them to run significantly larger problems on small clusters
than on a single CPU by using disk based algorithms with a
�small� number of disks local to the nodes in the cluster.
Distributed memory codes like NWCHEM or GAMESS would

typically require much larger numbers of CPUs and a better
interconnect to run these same problems.

After this brief review of the technology used by the
developer teams, we now analyze the different efforts from
the point of view of the algorithms used.

The first observation that is made by every team is that
the computation of electron-repulsion integrals is a naturally
parallel task. Every computer program listed above computes
them in parallel. For some electronic structure methods, such
as the Hartree–Fock self-consistent field �SCF� method, a
so-called direct method is used: the integrals are computed
and immediately used. For other methods such as MBPT�2�
the integrals are computed during the integral transformation
step, as explained for example by Saebo and Pulay.40

The second observation made by most is that many com-
putational steps in electronic structure methods have a matrix
multiplication as a major component. Matrix multiplications
can be executed very efficiently especially on shared
memory machines if the matrices can be broken into inde-
pendent pieces so that no corruption of data can result from
multiple CPUs computing on the same data at the same time.
Examples are the steps during the integral transformation
from AOs to MOs as used in several programs38,41 and the
perturbative triples part in the CCSD�T� method.29,24,20 An
increasing number of authors37,33 use an organization of data
in blocks, i.e., tiled indices, that are then more readily pro-
cessed optimally with these matrix operations.

Some authors30,39 make explicit their design decision to
target problems with a certain number of atoms and basis
functions, and from that derive which data structures can be
replicated on each node and which must be distributed.
Some38,39,36,42 build in the capability to store certain data
structures on disk, as was customary for serial implementa-
tions. On clusters of PCs, where each node has a local disk,
this works quite well, but on high-end systems, like the SP4,
with a parallel file system, like GPFS, the resulting I/O can
cause a performance bottleneck.38 Bentz et al. consider a
refinement of the data distribution by distinguishing between
CPUs on a single node and CPUs on different nodes. This
effort is worthwhile in view of the ubiquitous presence of
clusters with multi-CPU nodes. Recognizing the “closeness”
of CPUs, GAMESS can tackle larger problems as CPUs can
access data owned by other CPUs that are on the same node
at the fast speeds of local memory, thus requiring less repli-
cation of data.

Improvements in algorithms generally give better perfor-
mance increases than technology changes. For example the
algorithms introduced by Pulay and co-workers reduce the
number of integrals to be computed without loss of accuracy
by sophisticated screening techniques.34,36,40 Another ex-
ample is the resolution-of-the-identity method for MP2 as
implemented, for example, in TURBOMOLE.39 For the compu-
tational chemist, the total time to solution and the total re-
sources, CPUs, memory, disk, are what matters. However,
for developers it is important to know which of the two
contributed most to the observed efficiency: algorithms or
technology. More often than not a clever change in algorithm
contributes more, often an order of magnitude, than any tech-
nology. For example, the use of localized orbitals and effi-

194104-5 Parallel implementation of electronic structure energy J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

cient integral screening34,36 or of the resolution-of-the-
identity method39 has a much larger impact on the feasibility
and execution time of MP2 computations than the use of
array files,35 disk resident arrays,36 global arrays,22,23 or
DDI27 The proper comparison to exhibit the value of parallel
technology requires comparing calculations that manage the
same amount of data and perform the same number of float-
ing point operations. After reduction in the amount of data
that must be moved and the number of operations that must
be performed by the choice of a novel algorithm, the role of
parallel technology is less than might be expected. Straight-
forward use of MPI will produce code that performs
well.39,36 Hättig et al. give a nice analysis, similar to what
many authors have done before them, of the balance between
the time needed to communicate integrals between nodes and
the time it takes to recompute them on every node. This
balance is different on departmental clusters with Gigabit
Ethernet and supercomputers with fast interconnects. They
implemented code for both strategies.

The approach discussed in this paper is not an alternative
to these methods but rather a natural evolution of them. We
try to design an architecture for the software that can be
adapted to a wide range of computer architectures without
requiring large human effort and that allows any of the algo-
rithms published in the literature to be implemented quickly.

IV. PARALLEL ARCHITECTURE OF ACES III

We now explain the detailed architecture of the new,
parallel components of ACES III. ACES III is the latest imple-
mentation of the ACES program system and includes the lat-
est version of the serial ACES II as a whole. The new compo-
nents of ACES III are replacements for some parts of ACES II,
namely, some of the compute intensive parts that are able to
run on parallel computers with shared or distributed memory
with quite respectable scaling, as will be shown in Sec. V.
Thus, ACES III contains the familiar serial executables xjoda,
xvscf, xvcc, etc in addition to the new parallel executable
xaces3. For example, to perform a geometry optimization
with ACES III in parallel, one should run the executable
xaces3.

It is possible to describe ACES III as a runtime environ-
ment to execute, in an efficient way using all levels of par-
allelism of the given hardware platform, programs, written in
a high-level programming language that implement the algo-
rithms of electronic structure methods.

We call the high-level programing language SIAL for
super instruction assembly language, and the runtime envi-
ronment SIP for super instruction processor. Both of these
will be explained in Sec. IV B in detail. We refer to a design
using this division of software into SIAL and SIP as the
super instruction architecture �SIA�.

One of the main goals of the design of ACES III was to
clearly separate two domains of expertise, both exhibiting
considerable complexity. The first is the domain of theoreti-
cal chemistry and applied mathematics of solving the equa-
tions at the core of the methods of electronic structure
theory: SCF, MBPT�2�, CCSD, etc. Application of these
methods requires specification of various algorithms to solve

numerical problems. The second is the domain of computer
science and engineering of implementing the algorithms for
efficient execution on modern computer hardware. The SIAL
computer language allows the “quantum chemist program-
mers” to accurately and concisely express the algorithm
without controlling the details of the computation and com-
munication. That is left to the “computer engineering pro-
grammers” in charge of the SIP.

One result of this precise division of expertise is that a
lot of flexibility is left to optimize and tune the performance
of the execution �in SIP� without the need to alter the algo-
rithm �in SIAL�. We also found that some algorithms per-
form better than others depending on the molecule and the
computer system. Therefore, it is to the advantage of the
end-user of ACES III that both algorithms are available and
that their use is easily controlled. In the current implementa-
tion the control requires manual intervention by the user to
change the input file, an automatic selection of the optimal
algorithm is planned.

A. Components of ACES III

All parallel capabilities are programed, in accordance
with the super instruction design to be explained in the next
section, in the super instruction assembly language or SIAL.
The parallel executable xaces3 reads, interprets, and executes
the SIAL programs. For this reason, this executable is called
the super instruction processor or SIP. A high-level overview
of the connection between the files involved in running
xaces3 is shown in Fig. 1.

The SIP xaces3 reads the ACES III input file. It is identical
to the ACES II input file with the addition of one new section
with header *SIP. This section contains directives for the
parallel execution. It also contains the name of the SIAL
programs to execute. The SIAL programs can be specified in
source form, for example, algo.sial, or in object form. The
SIAL compiler is called as a subroutine from xaces3. It takes
a program expressing the algorithm in the SIAL language
contained in a file algo.sial and produces the compiled object
form of the program in the file algo.sio. This object code is
then loaded into the executable xaces3 for execution. There
is also an executable called sial to compile SIAL programs.

Next we consider the architecture of the SIP xaces3 it-
self. xaces3 is a parallel MPI program that consists of mul-
tiple tasks, with each task being a single-threaded or, on
some computer architectures, a POSIX multithreaded pro-
cess. The SIP has the following software components:

FIG. 1. Connection between the files involved in running the parallel ex-
ecutable xaces3 in ACES III. See text for details.

194104-6 Lotrich et al. J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

�1� Master component is a component coordinating the
work to be done by all tasks. This component executes
in the master task during initialization. It reads the
ACES III input file; loads the SIAL object code, possibly
after compiling the SIAL source code; analyzes the
work to be done and sets up tables defining the work to
be done by each task in the parallel program.

�2� Worker component is a component for executing basic
chunks of work in the form of super instructions. This
component needs to have asynchronous, one-sided
access to distributed data.

�3� Communication component is a component for com-
munication of basic data elements, blocks, between the
cooperating tasks.

�4� I/O server component is a component for storing and
retrieving large amounts of data to a large disk storage
system as opposed to distributed memory.

B. Super instruction architecture

To explain the super instruction way of designing paral-
lel software, consider the example of one important term in
the CCSD electronic structure method. We show the term,
usually referred to as the AO ladder term, with the CC am-
plitudes partially in the AO basis and partially in the MO
basis because this allows the use of the integrals in the AO
basis. This formulation is most suitable for a direct imple-
mentation of this term,

Rij
�� = �

��

V��
��tij

��. �14�

The SIAL program for this sum is shown in Fig. 2. We will
discuss the little program in detail and introduce the impor-
tant concepts of the design at the same time.

First we need to decide how to process such expressions.
To get an idea of the amount of data to be processed, con-
sider a molecule with 200 occupied orbitals and 1,000 basis
functions. Then, the two-electron integrals take up
900 Gbytes and there are 2002�8002=2.56�1010 CCSD
amplitudes tij

��, representing 200 Gbytes of data. On modern
computers, processing floating point numbers one at a time is
very inefficient because it the processor is much faster than

the memory from which the numbers must be read and to
which the rsults must be returned. It has been known for may
years, since the analysis done by Jack Dongarra, that it is
much more efficient to process numbers in blocks of floating
point numbers. A good data block is made by dividing all
index ranges into segments of length 10 to 50. An index
running over the segments is then a super index. Then blocks
of T and V each contain 10 000 to 6 250 000 floating point
numbers, or 80 Kbytes to 50 Mbytes. These are then the su-
per numbers of the problem. The term in the CCSD equation
then can be blocked as follows

R�M,N,I,J�ij
�� = �

LS
�
��L

�
��S

V�M,N,L,S���
��t�L,S,I,J�ij

��,

�15�

where the capital letters M, N, L, S, I, J indicate block indi-
ces and the lowercase letters �, �, �, �, i, j indicate indices
inside each block ranging from 1 to 10 or 50. For example,
V�A ,B ,C ,D� is itself a four-index matrix of size 10�10
�10�10 to 50�50�50�50.

This expression then is coded in super instruction assem-
bly language �SIAL� as the program shown in Fig. 2. This
short program fragment shows the simplicity and power of
the super instruction approach. The example does not use the
eightfold symmetry of the two-electron integrals or the sym-
metry of the CC amplitudes.

The PARDO parallel-do construct indicates that many
processors can execute the block of code simultaneously.
Load balancing is done as in OpenMP, and several options
have been implemented such as divide and conquer, round
robin, etc. The loops over I and J are serial loops over super
indices, i.e., segments of orbitals.

The super instruction way of thinking also calls for com-
puting integrals in blocks. Many integral evaluation algo-
rithms, including the Rys polynomial method newly written
for ACES III,43 compute integrals in groups of AO orbitals that
are part of an angular momentum shell. In general, a block of
integrals will include a few shells for each of the four AO
indices. We therefore implement computation of one
block of integrals as a single super instruction
COMPUTE�INTEGRALS. The results is stored in a single
block V�M,N,L,S�. The array is declared as a temporary ar-
ray, as will be explained further below.

The REQUEST fetches a block of the array T. The array
is declared as a served array, see below. The program sends
an asynchronous request to the server task that is responsible
for the block. Each worker task has the index for all arrays
and therefore knows where all data resides. The instruction
does not make the processor wait. To avoid waiting times
during communication, the super instruction design uses
one-sided communication like SHMEM or POSIX threads
combined with MPI. We have implemented and tested both.
On each platform we can select the fastest implementation to
execute the same SIAL programs. The super instruction pro-
cessor continues to work on the next super instruction, while
the communication is in progress.

The server task may find that the block is in its block
cache in memory and then it will send the block immedi-

FIG. 2. SIAL source code for a basic contraction of coupled cluster ampli-
tudes T with two-electron integrals V. See text for explanation of the
language.

194104-7 Parallel implementation of electronic structure energy J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

ately. If the block is not in cache, it will initiate a read re-
quest to the disk storage to fetch the block and send it as
soon as the block has arrived.

While the integrals are being computed, the requested
block of amplitudes T is being sent. The super instruction
view of designing parallel software suggests thinking of all
distributed memory of the parallel computer as accessible by
read and write super instructions and to take into consider-
ation the communication delay as part of the time needed to
complete the instruction. With a communication interconnect
capable of transmitting at 100 Mbytes /s, it takes less than
1 ms–0.5 s to transmit one block of T or V. The latency of
the interconnect, from 100 �s for gigabit Ethernet to 1 �s
for Infiniband, should be small compared to the time it takes
for the processing of the data block. We will see in the next
paragraph that this is often the case.

The star � indicates a super instruction that contracts two
blocks, one block of V with one block of T, and produces one
block of R. This instruction can be implemented as a
DGEMM and involves 2�1003 to 2�25003 floating point
operations. On a 1 GHz processor, this operation takes from
2 ms to 30 s. As part of the super instruction, the processor
checks whether all blocks are available. Since the integral
computation of one block is itself a significant computation,
the communication of the remote block of T is likely to be
complete before the integral computation ends and the � in-
struction can proceed without delay.

The inner loop executes the PREPARE+ =super instruc-
tion to accumulate the contribution into the served array R,
taking care of data locking to prevent data corruption. This
completes the explanation of the example program in Fig. 2.

SIAL programs achieve good performance, even as they
involve a significant amount of complex messaging, by hid-
ing communication behind computation. This is accom-
plished without explicit coding by the programmer. The key
consideration is that each operation must take sufficiently
long.

Note that the SIAL programmer has no access to the
indices �, �, �, �, i, j counting inside the blocks in Eq. �15�.
These are only visible inside the super instructions. The time
for each super instruction to complete can be tuned by
changing the segment size of the indices and thus the block
size. It then becomes reasonable to expect that every read
from and write to some other task using MPI communication
can be tuned to be less than the time for a block operation. A
large portion of all communication is automatically hidden
behind computation, resulting in favorable parallel perfor-
mance of the program. In the example above of segment
sizes of 10 to 50, the time to execute a computation super
instruction and the time to execute a memory super instruc-
tion, i.e., data communication super instruction, range from
similar to an order of magnitude different. It is likely that the
segment size can be reduced in the larger example without
jeopardizing the hiding of communication behind computa-
tion.

To perform computations at the CCSD level, SIAL sup-
ports arrays with four indices, where each index is “seg-
mented.” This means that the arrays, such as CCSD ampli-
tudes, can be blocked or tiled with each block holding all

elements with the four indices each inside a respective seg-
ment. This allows optimal use of modern computer architec-
tures with a deep hierarchy of memory. To support higher
order coupled cluster algorithms, there is a need for arrays
with more indices. These additional indices are standard
single-value indices, as in C or Fortran. Thus, to support
triples, SIAL programs use two types of indices: segmented
and single-value indices.

We close this section with a brief overview of the arrays
defined in SIAL, offering the programmer a range of option
for data from very local, and thus fast but limited in size, to
remote and slower but larger in size. The data types are, from
most local to most remote, as follows.

�1� Any array that is small enough to fit easily into the
memory of a single processor is designated a static ar-
ray. In a parallel computation it will be replicated
across all of the processors so that it is always avail-
able. The transformation coefficients C�

p are an ex-
ample of a static array.

�2� Some arrays such as the two-electron integrals �not
transformed� are too large to be stored in memory.
However, if only the portion actually being used is con-
sidered, the partial array can fit if the segment of data
being used is small enough. Such arrays, which are
never stored in their entirety, are designated temporary
arrays. They are discarded immediately after they are
used.

�3� A special case of a temporary array is a local array in
which one or more of the indices is formed completely.
It is used just like a temporary array but adds flexibility
to the algorithm implementation.

�4� There are arrays which typically will not fit into the
memory of one processor but will fit into the combined
memory of a reasonable number of processors. An ex-
ample of such an array is the transformed two-electron
integral containing four occupied indices Vkl

ij . For the
500 and 1000 function systems described above, Vkl

ij

requires 0.8 Gbyte and 12.8 Gbytes, respectively. This
amount of data can be distributed over a multiple pro-
cessors. This gives rise to the name distributed array.
This type of array is the SIAL equivalent of the arrays
in the GA toolkit.22,23

�5� Finally, arrays such as Vcd
ab can be very large and the

programmer may want them to exist on disk to be
served to a processor when requested. Because served
arrays involve input-output to external storage in addi-
tion to communication, the latency of the request can
be high. The current implementation uses a caching al-
gorithm on the servers to keep blocks that are used
most often in memory, thus allowing it to send the
block more quickly upon request. This type of array
provides the functionality of the disk resident arrays30

and the Array Files.35

In a future implementation of the SIP, it will be possible to
share some array types among processors in multicore nodes.
Note that this will not require a change to the language or the
SIAL programs.

194104-8 Lotrich et al. J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

C. Support of multiple computer hardware
architectures

We have ported the SIP xaces3 to many parallel com-
puter architectures. We started with the IBM SP3 with SP
Switch and IBM SP4 with SP Switch2. This system, because
of IBM’s involvement in the ASCI White program, has a
working thread safe MPI implementation. We used MPI and
POSIX threads.

Next we ported to a cluster of Compaq-HP SC45 nodes
with a Quadrix switch. This MPI implementation does not
operate error-free in a true multitheaded environment. For
this reason we switched to SHMEM. This worked and per-
formance was good. The SHMEM version was ported to the
Cray SV1 and then the Cray X1. Because of process and task
scheduling on the Cray X1, we had to redesign the SIP. After
the redesign, the performance was acceptable, but not out-
standing.

We also ported to SGI Origin 3000 system, but the sys-
tem was decommissioned before we could complete the port.
The port to the SGI Altix required another redesign because
the MPI implementation is not thread safe and the SHMEM
was slow. The redesign uses pure MPI. This actually works
in the SP because the SIP is executing SIAL code in the form
of individual super instructions. Between every instruction,
the SIP can check whether any MPI requests have arrived

and process them. Thus, a separate thread or one-sided ac-
cess is not really needed. The pure MPI version has been
ported to all other platforms and gives the best performance
of all, even on shared memory parallel computers.

The port to Linux clusters with InfiniBand was relatively
simple after we had the pure MPI version. We tried the
OpenMPI version first because it claims to be thread safe,
albeit largely untested. However, we found it to be not func-
tional in a true multithreaded environment. OpenMPI works
fine for the pure MPI version of the SIP. The port to the Cray
XT3 and IBM Blue Gene architectures also posed no prob-
lems, but these have not been optimized yet.

V. PERFORMANCE RESULTS

In this section, we show the results of some calculations
done with ACES III on a set of molecules, some of which have
been used by others to exhibit the performance of their par-
allel implementations. We try to carefully state exactly when
special algorithms are used to reduce the total amount of data
processed or the total number of floating point operations
performed. We show wall-clock timings and for some sys-
tems we show scaling with number of processors. Depending
on the size of the computational problem, it is not feasible to
run some calculations on a single processor, or even on a
small number of processors. Thus, our scaling results are for
different ranges of numbers of processors.

TABLE II. Time to perform one MBPT�2� gradient calculation on the Ar6

molecule. The basis is aug-cc-pVTZ, which results in 300 basis functions
�bf� and the number of correlated occupied orbitals is 54. A UHF reference
and C1 symmetry was used. The ratio of workers/servers was 3 /1 for all
computations.

Np t tideal tideal / t

32 67 67 1.00
64 32 34 1.06
128 18 17 0.94
256 16 8 0.5

TABLE III. Time in minutes to perform one CCSD gradient calculation for
the Ar6 molecule on the ARSC Opteron cluster. A UHF reference was used,
the basis was aug-cc-pVTZ and the symmetry C1. The number of basis
functions used was 300 and the number of correlated occupied orbitals was
54. The number of workers/server was 3 /1. CCSD and Lambda times are
per iteration. The time to compute the perturbative triples contribution to the
energy was with the core dropped.

Np Module t tideal tideal / t

32 CCSD 103.5 103.5 1.00
Lambda 119.7 119.7 1.00

Grad 1273 1273 1.00
Total 3505 3505 1.00

CCSD�T� 784 784 1.00

64 CCSD 60.2 51.8 0.86
Lambda 57.9 59.9 1.03

Grad 515 637 1.24
Total 1696 1753 1.02

CCSD�T� 312 392 1.26

128 CCSD 24.0 25.9 1.08
Lambda 31.8 29.9 0.94

Grad 258 318 1.23
Total 816 876 1.07

CCSD�T� 178 196 1.10

256 CCSD 13.6 12.9 0.95
Lambda 16.0 15.0 0.94

Grad 141 159 1.13
Total 437 438 0.98

CCSD�T� 131 98 0.75

FIG. 3. �Color online� Times for UHF MBPT�2� gradient of Ar6 cluster �54
correlated occupied electrons, 300 bf� calculations for 32, 64, 128, and 256
processors.

194104-9 Parallel implementation of electronic structure energy J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

A. Argon cluster

First, we consider a computation for several representa-
tive methods on a small cluster of argon. The advantage of
these clusters is that they present no problems with conver-
gence of any kind: The iterative solution of the SCF, coupled
cluster, and � equations poses no problems and completes in
a small number of iterations. These clusters also allow one to
increase the size of the problem in a controlled manner to
provide sufficient amounts of work when measuring perfor-
mance on computer systems with more processors.

We choose a cluster with six atoms to make sure that all
computations from 32 processors up to 256 processors can
complete within the standard queue limits on the Sun cluster
with AMD Opteron CPUs and InfiniBand interconnect at
Arctc Regional Supercomputer Center �ARSC�. We chose
the aug-cc-pVTZ basis which puts 50 basis functions on ev-
ery atom, a total of 300 basis functions. For this calculation
all electrons were correlated, which leads to 54 correlated
occupied orbitals for each spin. Our calculations use a UHF
reference and C1 symmetry. In Table II and Fig. 3 we show
the results for the MBPT�2� gradient. Observe that scaling is
good up to 128 processors, but drops off significantly for 256
processors. This is a sign that there is not enough work in
this problem to keep 256 processors busy during communi-
cation delays.

The MBPT�2� Hessian was computed using a RHF ref-
erence, C1 symmetry, and the same aug-cc-pVTZ basis on
128 processors in the ARSC Opteron cluster. The total cal-
culation took 36987 s. The Hessian has 324=182 elements,
of which 171 are unique. The algorithm we implemented
computes all 324 elements in a way that is not symmetric,
but it significantly faster than a manifestly symmetric algo-
rithm that computes the 171 unique elements. The computa-
tion for each Hessian element has two major parts, one in-
volving the second derivatives of the two-electron integrals,
the other involving two sets of transformed, differently, first
derivatives of the two-electron integrals. For Hessian ele-
ment, the derivative-integral computation with respect to one
coordinate and one kind of transformation takes
155 seconds, the computation and transformation for the
other coordinate takes 330 s and the computation with these
of the contribution to the Hessian element takes 16 s.

TABLE IV. Time in minutes to perform one CCSD energy calculation for
the Ar6 molecule on the NCSA Altix system. A RHF reference and the
aug-cc-pVTZ basis with C1 symmetry were used. The number of basis func-
tions used was 300 and the number of correlated occupied orbitals was 54.
The number of workers/server was 3 /1. CCSD times are per iteration. The
last column show the ration of the time on the Altix with RHF reference
over the time on the Sun Opteron with UHF reference from Table III.

Np t tideal tideal / t tUHF / t

32 22.2 22.2 1.00 4.66
64 10.9 11.1 1.02 5.52

128 5.9 5.6 1.05 4.07

FIG. 4. �Color online� Scaling of UHF CCSD energy of Ar6 cluster �54
electrons, 300 bf� calculations for 16, 32, 64, and 128 processors.

FIG. 5. �Color online� Scaling of UHF CCSD � equation of Ar6 cluster �54
electrons, 300 bf� calculations for 32, 64, 128, and 256 processors.

FIG. 6. �Color online� Scaling of UHF CCSD gradient step of Ar6 cluster
�54 electrons, 300 bf� calculations for 32, 64, 128, and 256 processors.

194104-10 Lotrich et al. J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

The next example is the computation of a CCSD gradi-
ent with a UHF reference and C1 symmetry and the same
basis. In Table III, we summarize the results obtained on the
ARSC Opteron cluster. We show the times for the individual
steps to complete one gradient calculation, which are CCSD
amplitudes �and energy�, � amplitudes, and the gradient con-
struction.

The performance can depend noticeably on the computer
system as can be seen in Table IV. We show the CCSD
energy calculation with the same basis and symmetry but
with a RHF reference for 32, 64, and 128 processors. The
amount of work for RHF is about three times less than for
UHF. However, the Altix is between four and five times
faster than the Sun Opteron cluster. We expect this to be
caused by the parallel file system on the Opteron cluster
being slow, possibly because of other jobs running on the
cluster.

Figures 4–6 show that the individual steps of the gradi-
ent calculation scale as well with the number of processors as
the total time, as shown in Fig. 7. Observe that good scaling
now extends comfortably to 256 processors, unlike the
MBPT�2� gradient calculation.

We performed the CCSD�T� energy computation for the
Ar6 cluster with the core orbitals dropped. These results are
also shown in Table III. Figure 8 displays the scaling. From
the graph, on ecan observe that this calculation is optimally
efficient on 64 and 128 processors on the Opteron cluster
with InfiniBand interconnect at ARSC.

B. Luciferin

The luciferin molecule has been used before to show the
performance of new methods and implementations.24,29,36 We
use an aug-cc-PVDZ basis, which results in 498 basis func-
tions for this molecule, a RHF reference and we correlate 46
orbitals in our CCSD calculation, matching the parameters of
the MBPT�2� calculation reported by Baker and Pulay1 and
by Ishimura et al.36 The results for the CCSD energy calcu-
lation are shown in Table V and Fig. 9. The scaling is good
from 32 to 256 processors.

In Fig. 9, the results for the CCSD�T� energy calculation
with 128 processors are also shown. All 46 occupied orbitals
are correlated, also in the �T� step. This 498 basis function
calculation can be compared to the 160 basis function
CCSD�T� calculation reported by Bentz et al.29

C. Sucrose

We also performed a calculation of the CCSD energy on
sucrose, using the same 6-311G** basis set with 546 func-
tions as was used for an MBPT�2� calculation by Janowski et
al.37 Our calculation also uses a RHF reference and 68 oc-
cupied orbitals are correlated. Table VI lists the results using
32 to 512 processors.

The results are graphically displayed in Fig. 10. Figure
10 shows that the scaling for 256 and 512 processors is very
good, but scaling drops off for 128, 64, and 32 processors

TABLE V. Time per iteration to perform the CCSD calculation on the luciferin molecule �C11H8O3S2N2�. A
RHF reference was used with the aug-cc-pVDZ basis, which has 498 functions for this molecule. The number
of correlated occupied orbitals was 46. The division of processors into workers and servers is also shown.

Np Nw Ns titer titer
ideal titer

ideal / titer

32 24 8 115.9 115.9 1.00
64 48 16 46.0 58.0 1.26
128 96 32 22.7 29.0 1.28
256 192 64 13.1 14.5 1.11

FIG. 7. �Color online� Scaling of one complete UHF CCSD gradient of Ar6

cluster �54 electrons, 300 bf� calculations for 32, 64, 128, and 256
processors.

FIG. 8. �Color online� Scaling of UHF CCSD�T� dropped core energy of
Ar6 cluster �54 electrons, 300 bf� calculations for 32, 64, 128, and 256
processors.

194104-11 Parallel implementation of electronic structure energy J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

runs. This is the result of the reference calculation on 32
processors being comparatively slow: the amount of data re-
quires the use of served, i.e., disk resident, arrays and with
only 32 processors the input-output delays cannot be effec-
tively masked behind computation by the SIP runtime envi-
ronment. The calculations on luciferin and sucrose show that
the user faced with performing large computations must con-
sider the balance between three ingredients.

�1� The size of the problem in electronic structure theory is
determined by the molecule, the method, and the basis
set size.

�2� The software and algorthims used.
�3� The computer hardware and the number of processors.

With the the requirement that the computation be done
within a useful amount of time from a human point of view,
from a number of hours up to one or two days, and the
problem given, the two variables at the researcher’s disposal
are the software and the number of processors. For the lu-
ciferin problem on an Opteron cluster with Infiniband inter-
connect the most cost efficient ACES III run uses 128 proces-
sors. For the sucrose problem, the run with 512 processors is
the most efficient.

D. Dimethyl-methyl-phosphonate and DMMP+OH

Finally, we present a set of representative results for a
molecule that is the object of study in a project of one of the
ACES III users. The results of MBPT�2� gradient calculations
on dimethyl-methyl-phosphonate �DMMP� �16 atoms and 66
electrons� in a cc-pcVTZ�cc-pVTZ:p� basis are shown in
Table VII, with a RHF reference. The results, shown graphi-
cally in Fig. 11, clearly scale well up to 128 processors.

In Table VIII, we show the UHF CCSD�T� energy com-
putation timing for DMMP+OH with a smaller basis of 208
basis functions. The calculation was done with 64 processors
consisting of 48 workers and 16 servers on the National Cen-
ter for Supercomputing Applications �NCSA� Altix system
“cobalt.” In this run, each processor has 1.6 Gbytes, of ran-
dam access memory assigned to it.

Because the �T� step is naturally parallel, we split the
work into seven independent 64-processors jobs, each com-
puting the contributions for a fraction of the occupied orbit-
als. This is equivalent to running a 448 processor job. How-
ever, the realities of scheduling on large shared machines,
such as the NCSA Altix 3700 system cobalt, are such that a
single job requesting 448 processors may wait in the queue a
significant amount of time. We submitted seven independent
jobs each requesting 64 processors. These jobs were sched-
uled almost immediately and ran mostly in parallel. The

TABLE VI. Time per iteration to perform the CCSD calculation on the sucrose molecule �C12H22O11�. A RHF
reference was used and the basis used was 6-311G** with 546 functions. The number of correlated occupied
orbitals was 68.

Np Nw Ns titer titer
ideal titer

ideal / titer

32 24 8 908.6 908.6 1.00
64 48 16 301.1 454.3 1.51
128 96 32 117.5 227.1 1.93
256 192 64 44.1 113.6 2.58
512 384 128 24.0 56.8 2.37

FIG. 9. �Color online� Timing in minutes of RHF CCSD energy of luciferin
C11H8O3S2N2 in the aug-cc-pVDZ basis �46 occupied orbitals, 498 bf� cal-
culations on 32, 64, 128, and 256 processors. The time for the CCSD�T�
calculation for 8 occupied orbitals with 128 processors is also shown.

FIG. 10. �Color online� Scaling of RHF CCSD energy of sucrose C12H22O11

6−311G** basis �68 occupied orbitals, 546 bf� calculations for 16, 32, 64,
128, 256, and 512 processors. Linear scaling is ideal.

194104-12 Lotrich et al. J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

longest of these seven jobs took a time that is the same order
of magnitude as the CCSD step �6653 s compared to
4119 s�. It seems that this is practical way to perform
CCSD�T� computations.

Table IX indicates that the time required to solve the
UHF LinCCSD equations for DMMP+OH is about half the
time required to solve the CCSD equations when comparing
computations done on 16 processors. This is consistent with
timing data on the CCSD computations indicating that cal-
culation of the quadratic terms is about the same as that of
the linear ones. The computation of the CCSD or LinCCSD
gradient requires storage of the Vci

ab arrays. The calculation
of this array is shown in the column marked “transforma-
tion,” which shows that this partial two-electron integral
transformation is rather efficient.

Table X shows that solution of the LinCCSD equations
exhibits super linear scaling. The CCSD and LinCCSD algo-
rithms treat all transformed two-electron integrals as served
arrays. The CC-amplitudes are also treated as served arrays,
as well as the history of five amplitude arrays for the DIIS
convergence acceleration method. This represents a signifi-
cant amount of disk space. For the system considered,
DMMP+OH, one two-particle amplitude array is about
0.5 Gbytes and one Vci

ab array is about 2.7 Gbytes in size.

The latter is directly treated in the LinCCSD algorithm.
Therefore, the amount of disk space needed is significantly
less. In all computations, the larger the number of processors
being used, and hence, the larger the distributed memory is,
the more data can fit into memory. Therefore, less input-
output, which is slower, is required as the number of proces-
sors increases and the total wall-clock time of the computa-
tion can become smaller provided communication between
the larger number of processors can be done faster than
input-output.

Results of UHF CCSD gradient calculations on
DMMP+OH with 208 basis functions can be found in Table
XI for 16 to 128 processors of the Army Research Labora-
tory �ARL� IBM SP4 computer. All 75 electrons are corre-
lated.

The minimum number of processors and memory per
processor required to complete the gradient calculation is 32.
Scaling results are shown in Fig. 12. The reference time
taken from the 16-processor run for the CCSD part of the
computation and from the 32-processor run for all other
parts. The CCSD and LAMBDA parts exhibit nearly perfect
scaling. In fact, the � computation on 64 processors shows
super scaling of 1.21. The grad part shows super linear scal-
ing on 128 processors, the worst scaling of 0.97 being two-
grad on 64 processors.

VI. CONCLUSION

The super instruction architecture has proven to be a
very effective tool to produce parallel implementations of
several important electronic structure methods. The perfor-
mance and the scaling of software are competitive with code
produced using explicit MPI and OpenMP or POSIX threads
programming on a wide range of computer architectures.

The SIP has been instrumented with detailed timing re-
porting capabilities, thus allowing us to gather detailed sta-
tistics from every run. The overhead of this reporting facility
has been observed to be negligible. One of the design goals
for ACES III was to have software that is flexible for tuning to

TABLE VII. Time to perform one MBPT�2� gradient calculation on the
DMMP molecule �dimethyl methyl-phosphonate�. A RHF reference was
used. The basis used was cc-pcVTZ�cc-pVTZ for p�, and C1 symmetry was
used. The number of basis functions was 397 and the number of correlated
occupied orbitals was 33. The ratio of workers/servers was 3 /1 for all com-
putations.

Np t tideal tideal / t

8 689 689 1.00
16 371 345 0.93
32 203 172 0.85
64 95 86 0.91
128 46 43 0.93

TABLE VIII. Timings for CCSD�T� energies of DMMP+OH �18 atoms, 75
electrons, 208 bf� on the NCSA SGI Altix 3700 system with 64 processors,
48 workers and 16 servers, for the SCF, transformation, and CCSD steps.
Times in seconds. For the �T� step, 448 processors were used in the form of
seven independent 64-processor jobs.

SCF �64 proc�
Transformation

�64 proc� CCSD �64 proc� �T� �448 proc�

210 82 4119 6653

TABLE IX. Timings for UHF LinCCSD gradient of DMMP+OH �18 at-
oms, 75 electrons, 208 bf� runs on different numbers of IBM SP4 processors
in seconds.

Module 16 32 64 128

LinCCSD 37 018 12 413 5267 2331
Transformation 1 172 753 533 137
Grad 27 034 11 967 5091 2519

FIG. 11. �Color online� Scaling of RHF MBPT�2� gradient of DMMP
H10C3O4P �66 electrons, 397 bf� calculations for 8, 16, 32, 64, and 128
processors.

194104-13 Parallel implementation of electronic structure energy J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

varying hardware architectures and configurations. It is our
experience that this goal was achieved.

One surprising outcome of the project is the dramatic
reduction time needed to implement alternative algorithms.
Writing SIAL code from theoretical formulas is simpler than
writing efficient Fortran code and the ways to get consis-
tently good performance are easily learned and expressed
quite simply in the language. Our programmers often imple-
mented several algorithms to compare performance and for
debugging.

From the section on performance, the reader can deduce,
with some simple checking of the literature, that ACES III is
not the fastest parallel program on many of the published
examples. However, we have found that ACES III shows very
robust performance and scaling on a wide range of molecules
and computer systems. This allows practicing theoretical and
computational chemists to perform larger calculations with a
high degree of predictability on shared resources within real-
life limitations of batch queue systems.

As can be seen in Fig. 10, the scaling of ACES III dete-
riorates for 32 processors, but the program does run correctly
and completes in a reasonable time. The super instruction
architecture provides a flexible framework where data moves
from local to distributed to disk-based with minimal inter-
vention from the programmer. ACES III will run faster if more
RAM is available per processor, but it will perform quite
respectably with just 1 GB per processor. It will run large
problems on 512 processors, but it will also run them, al-
though slower, on 32 processors. This flexibility provides
ACES III with robust performannce characteristics required for
real-life applications.

We believe that the super instruction architecture in-
cludes the best features from many ideas for parallel soft-
ware design developed over the past decades and imple-
mented in middleware and toolkits like GA,22,23 DRA,30

DDI,29,27 AF,35 and that it unifies these ideas into a single,
easy to program runtime framework. We believe that it is a

solid foundation to build software that will allow chemists to
routinely and productively tackle much larger chemical prob-
lems than is the current standard.

ACKNOWLEDGMENTS

The development of ACES III was largely supported by
the US Department of Defense’s High Performance Comput-
ing Modernization Program �HPCMP� under two comple-
mentary programs: Common High Performance Computing
Software Initiative �CHSSI�, project CBD-03, and User Pro-
ductivity Enhancement and Technology Transfer �PET�. We
are grateful to Dr. Sudhakar Parmidigantham for his strong
support and to NCSA and ARSC and ARL for providing
computer resources to run some of the examples. We are
grateful to the anonymous referee for detailed and thoughtful
comments, which led to a substantive revision of the original
manuscript and what we consider a much improved paper.

1 G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 �1982�.
2 J. D. Watts, J. Gauss, and R. J. Bartlett, J. Chem. Phys. 98, 8718 �1993�.
3 R. J. Bartlett, Modern Electronic Structure Theory, edited by D. R.
Yarkony �World Scientific, Singapore, 1995�, Vol. II, pp. 1047–1131.

4 R. J. Bartlett and M. Musial, Rev. Mod. Phys. 79, 291 �2007�.
5 J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett,
Int. J. Quantum Chem. S26, 879 �1992�.

6 J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett,
ACES II program system, University of Florida, 1994.

7 J. Gauss, J. F. Stanton, and R. J. Bartlett, J. Chem. Phys. 95, 2623 �1991�.
8 J. F. Stanton, J. Gauss, J. D. Watts, and R. J. Bartlett, J. Chem. Phys. 94,
4334 �1991�.

9 R. J. Bartlett and J. D. Watts, Encyclopedia of Computational Chemistry,
edited by P. von Scheyer et al. �Wiley, New York, 1999�.

10 J. F. Stanton, J. Gauss, J. D. Watts, P. G. Szalay, and R. J. Bartlett, ACES

II, Mainz–Austin–budapest Version 2005, a quantum chemical program
package, University of Mainz, 2005, with contribution from A. A. Auer,
D. B. Bernholdt, O. Christiansen, M. E. Harding, M. Heckert, O. Heun,
C. Huber, D. Jonsson, J. Juselius, W. J. Lauderdale, T. Metzroth, K.
Ruud, and the integral packages: J. Almlf and P. R. Taylor, MOLECULE; P.
R. Taylor, PROPS; and T. Helgaker, H. A. A. Jensen, P. Jrgensen, and J.
Olsen, ABACUS.

11 E. A. Salter, G. W. Trucks, and R. J. Bartlett, J. Chem. Phys. 90, 1752
�1989�.

12 J. Gauss, J. F. Stanton, and R. J. Bartlett, J. Chem. Phys. 95, 2623 �1991�.

TABLE X. Relative timings �speedup� for the LinCCSD, Transformation,
grad contributions to the LinCCSD gradient of DMMP+OH �18 atoms, 75
electrons, 208 bf�. Numbers in parenthesis show scaling efficiency.

Np LinCCSD Transformation Grad Linear speedup

16 1.00�1.00� 1.00�1.00� 1.00�1.00� 1�1.00�
32 2.98�1.49� 1.56�0.78� 2.26�1.13� 2�1.00�
64 7.03�1.76� 2.20�0.55� 5.31�1.33� 4�1.00�

128 15.87�1.98� 8.81�1.10� 10.73�1.34� 8�1.00�

TABLE XI. Timings for the UHF CCSD gradient of DMMP+OH �18 at-
oms, 75 electrons, 208 bf� on different numbers of ARL IBM SP4 proces-
sors in seconds.

Module 16 32 64 128

CCSD 64 055 33 139 16 302 8808
LAMBDA � 35 026 14 467 9088
Grad � 14 483 6 794 2829

FIG. 12. �Color online� Scaling of UHF CCSD gradient of DMMP+OH �18
atoms, 75 electrons, 208 bf� calculations for 16, 32, 64, and 128 processors.

194104-14 Lotrich et al. J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.443164
http://dx.doi.org/10.1063/1.464480
http://dx.doi.org/10.1103/RevModPhys.79.291
http://dx.doi.org/10.1002/qua.560440876
http://dx.doi.org/10.1063/1.460915
http://dx.doi.org/10.1063/1.460620
http://dx.doi.org/10.1063/1.456069
http://dx.doi.org/10.1063/1.460915

13 R. J. Bartlett, J. D. Watts, S. A. Kucharski, and J. Noga, Chem. Phys.
Lett. 165, 513 �1990�.

14 J. A. Pople, K. Ragavachari, G. W. Trucks, and M. Head-Gordon, Chem.
Phys. Lett. 157, 479 �1989�.

15 P. Pulay, J. Comput. Chem. 3, 556 �1982�.
16 A. Dalgarno and A. L. Stewart, Proc. R. Soc. London, Ser. A 237, 245

�1958�.
17 N. C. Handy and H. F. Schaefer III, J. Chem. Phys. 81, 5031 �1984�.
18 J. F. Stanton, J. Gauss, and R. J. Bartlett, Chem. Phys. Lett. 195, 194

�1992�.
19 D. E. Bernholdt, Parallel Comput. 26, 945 �2000�.
20 J. D. Watts, Parallel Comput. 26, 857 �2000�.
21 A. P. Rendell, T. J. Lee, and A. Komornicki, Chem. Phys. Lett. 178, 462

�1991�.
22 R. J. Harrison, Theor. Chim. Acta 84, 363 �1993�.
23 I. Nieplocha, R. J. Harrison, and R. J. Littlefield, in Proceedings of Su-

percomputing 1994, IEEE Computer Society �Washington, D.C., 1994�,
p. 340.

24 R. A. Kendall, E. Apra, D. E. Bernholdt, E. J. Bylaska1, M. Dupuis, G. I.
Fann, R. J. Harrison, J. Ju, J. A. Nichols, J. Nieplocha, T. P. Straatsma, T.
L. Windus, and A. T. Wong, Comput. Phys. Commun. 128, 268 �2000�.

25 G. Karlströn, R. Lindh, P.-A. Malmqvist, U. Ryde, V. Veryazov, P.-O.
Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, and L. Seijo,
Comput. Mater. Sci. 28, 222 �2003�.

26 H. Löschka, R. Shepard, R. M. Pitzer, I. Shavitt, M. Dallos, T. Muüller,
P. Szalay, M. Seth, G. S. Kedziora, S. Yabushita, and Z. Zhang, Phys.
Chem. Chem. Phys. 3, 664 �2001�.

27 G. D. Fletcher, M. W. Schmidt, B. M. Bode, and M. S. Gordon, Comput.
Phys. Commun. 128, 190 �2000�.

28 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon,

J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L.
Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347
�1993�.

29 J. L. Bentz, R. M. Olson, M. S. Gordon, M. W. Schmidt, and R. A.
Kendall, Comput. Phys. Commun. 176, 589 �2007�.

30 S. Krishnamoorthy, G. Baumgartner, C.-C. Lam, J. Nieplocha, and P.
Sadayappan, J. Supercomput. 36, 153 �2006�.

31 C. L. Janssen, I. B. Nielsen, M. L. Leininger, E. F. Valeev, and E. T.
Seidl, The massively parallel quantum chemistry program �MPQC�, Ver-
sion 2.2, Sandia National Laboratories, Livermore, CA, 2003 �http://
www.mpqc.org�.

32 E. F. Valeev and C. L. Janssen, J. Chem. Phys. 121, 1214 �2004�.
33 I. M. B. Nielsen and J. Curtis L, J. Theor. Comput. Chem. 3, 71 �2007�.
34 J. Baker and P. Pulay, J. Comput. Chem. 23, 1150 �2002�.
35 A. R. Ford, T. Janowski, and P. Pulay, J. Comput. Chem. 28, 1215

�2007�.
36 K. Ishimura, P. Pulay, and S. Nagase, J. Comput. Chem. 27, 407 �2006�.
37 T. Janowski, A. R. Ford, and P. Pulay, J. Chem. Theory Comput. 3, 1368

�2007�.
38 R. Bukowski, W. Cencek, K. Patkowski, P. Jankowski, M. Jeziorska, M.

Kolaski, and K. Szalewicz, Mol. Phys. 104, 2241 �2006�.
39 C. Hättig, A. Hellweg, and A. Köhn, Phys. Chem. Chem. Phys. 8, 1159

�2006�.
40 S. Saebø and P. Pulay, J. Chem. Phys. 115, 3975 �2001�.
41 T. Daniel Crawford, C. David Sherrill, E. F. Valeev, J. T. Fermann, R. A.

King, M. L. Leidinger, S. T. Brown, C. L. Janssen, E. T. Seidl, J. P.
Kenny, and W. D. Allen, J. Comput. Chem. 28, 1610 �2007�.

42 P. Musch and B. Engels, J. Comput. Chem. 27, 1055 �2006�.
43 N. Flocke and V. Lotrich, J. Comput. Chem. �accepted�.

194104-15 Parallel implementation of electronic structure energy J. Chem. Phys. 128, 194104 �2008�

Downloaded 14 Aug 2008 to 128.227.192.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1016/0009-2614(90)87031-L
http://dx.doi.org/10.1016/0009-2614(90)87031-L
http://dx.doi.org/10.1016/S0009-2614(89)87395-6
http://dx.doi.org/10.1016/S0009-2614(89)87395-6
http://dx.doi.org/10.1002/jcc.540030413
http://dx.doi.org/10.1063/1.447489
http://dx.doi.org/10.1016/0009-2614(92)86135-5
http://dx.doi.org/10.1016/0009-2614(91)87003-T
http://dx.doi.org/10.1016/S0927-0256(03)00109-5
http://dx.doi.org/10.1039/B008063M
http://dx.doi.org/10.1039/B008063M
http://dx.doi.org/10.1016/S0010-4655(00)00073-4
http://dx.doi.org/10.1016/S0010-4655(00)00073-4
http://dx.doi.org/10.1002/jcc.540141112
http://dx.doi.org/10.1063/1.1759319
http://dx.doi.org/10.1002/jcc.10071
http://dx.doi.org/10.1002/jcc.20348
http://dx.doi.org/10.1080/00268970600693395
http://dx.doi.org/10.1039/b515355g
http://dx.doi.org/10.1063/1.1389291
http://dx.doi.org/10.1002/jcc.20573
http://dx.doi.org/10.1002/jcc.20416

