
Efficient Electronic Integrals and their Generalized
Derivatives for Object Oriented Implementations of

Electronic Structure Calculations

N. FLOCKE, V. LOTRICH
Quantum Theory Project, Department of Chemistry and Physics, University of Florida,

Gainesville, Florida 32611

Received 3 December 2007; revised 20 March 2008; accepted 24 March 2008
DOI 10.1002/jcc.21018

Published online in Wiley InterScience (www.interscience.wiley.com).

Abstract: For the new parallel implementation of electronic structure methods in ACES III (Lotrich et al., in preparation)
the present state-of-the-art algorithms for the evaluation of electronic integrals and their generalized derivatives were
implemented in new object oriented codes with attention paid to efficient execution on modern processors with a deep
hierarchy of data storage including multiple caches and memory banks. Particular attention has been paid to define proper
integral blocks as basic building objects. These objects are stand-alone units and are no longer tied to any specific software.
They can hence be used by any quantum chemistry code without modification. The integral blocks can be called at any
time and in any sequence during the execution of an electronic structure program. Evaluation efficiency of these integral
objects has been carefully tested and it compares well with other fast integral programs in the community. Correctness of
the objects has been demonstrated by several application runs on real systems using the ACES III program.

© 2008 Wiley Periodicals, Inc. J Comput Chem 00: 000–000, 2008

Key words: Quantum chemistry integral evaluation; open-ended n-th order integral derivatives; quantum chemistry
ab-initio programs; object oriented computation and software design

Introduction

Efficient gaussian type orbital (GTO) integral evaluation is crucial to
the success of any direct quantum chemistry code that recalculates
the integrals during every iteration cycle either at Hartree-Fock or
at correlated Coupled Cluster level. Any excessive time needed for
integral evaluation can seriously degrade the performance of any
direct serial or parallel code. Recalculation of integrals, rather than
storing them on disk, has become the standard approach in quantum
chemistry programs for two reasons: limited disk size and slow disk
retrieval.

Evaluation of integrals over GTOs has a long and rich history (P.
Gill gives a good summary of articles up to 19931). Early formu-
lations in the 1960s were based on Boys original article,2 in which
the integrals are expressed in terms of auxiliary functions. However,
this approach leads to inefficient and slow algorithms, particularly
for integrals involving high angular momentum quantum numbers.
A major improvement was the introduction of the Rys quadrature
method,3–5 in which the integrals are expressed in terms of so-called
two-dimensional integrals, which are themselves evaluated using
vertical (VRR) and horizontal recurrence relations (HRR). The Rys
method needs the evaluation of quadrature roots and weights of poly-
nomials involving the nonclassical Rys weight function, which are

generally time consuming to compute. Hence, the Rys method is
most suitable for higher angular momentum integrals, where the
time to compute the roots and weights is small compared with
other integral manipulations. Another important integral evaluation
method is the McMurchie-Davidson scheme (MD).6 In this method,
the integrals are first computed in Hermite Gaussian functions and
are later back-transformed to the Cartesian or spherical Gaussian
basis. A scheme in which uncontracted Cartesian integrals are eval-
uated using only few-step recurrence relations of mixed VRR and
HRR type on basic s-type integrals was presented by Obara and
Saika (OS)7 and implicitly in the context of integral derivatives
by Schlegel a few years earlier.8 The OS scheme is very suitable
for vectorization and has been further analyzed and optimized by
Head-Gordon and Pople (HGP)9 by reducing the number of neces-
sary recurrence relation steps. However, as the angular momentum
increases, memory requirements for storing all intermediate inte-
grals becomes a burden and the OS and HGP procedures are thus
problematic for integrals involving higher than f -type functions.

Correspondence to: N. Flocke; e-mail: flocke@qtp.ufl.edu
Contract/grant sponsor: US Department of Defence’s High Performance
Computing Modernization Program (HPCMP)

© 2008 Wiley Periodicals, Inc.

2 Flocke and Lotrich • Vol. 00, No. 0 • Journal of Computational Chemistry

The general consensus reached so far, after decades of experi-
ence in coding electronic integral evaluation packages, is that each
particular approach works best for particular angular momentum
combinations. For very large angular momentum integrals the Rys
approach is the method of choice. For lower angular momenta it
seems better to use OS or HGP related schemes. Several well-known
quantum chemistry codes use either one or a mixture of these three
basic approaches. The decision as to which method to choose is
further complicated by the fact that the final integrals needed are
generally between contracted GTOs, i.e., linear combinations of
several primitive GTO functions. Hence contraction steps must be
performed during integral evaluation and the time for their execution
must be optimized with respect to the primitive integral calculation.
Another crucial step is the Cartesian to spherical transformation in
case integrals over spherical GTOs are needed.

Recently, it has been shown that the Rys approach can be sped up
considerably by using the reduced multiplication scheme, in which
products of 2D integrals are reused to assemble different primitive
integrals.10 Using this scheme, computational savings are more pro-
nounced for high angular momentum integrals, but also low angular
momentum integral evaluation profits from this scheme by avoid-
ing unnecessary multiplications with intermediate integrals equal to
one. There is also considerable experience in using the Rys method
to evaluate integral derivatives.11–13 The Rys approach is very eco-
nomical as far as memory needs is concerned, especially for higher
order derivatives. Also usage of the Rys algorithm for both the
original integrals and their derivatives allows for considerable code
development savings, as many routines can be reused for evaluating
the derivatives as well.

For the ACES III integral program, it was thus decided to focus
on the Rys integral calculation scheme and to consider, during the
design and implementation phase, the experiences accumulated over
the last three decades. Particular attention has been paid to the proper
layout of the code such that cache memory is used effectively. While
the basic strategy in integral evaluation is nowadays well-known the-
oretically, the proper usage of cache, which ultimately leads to peak
performance, is not so well known. It is in this area where consider-
able performance improvements can still be made. Maximizing the
number of fat loops with unit stride access between all its elements
is the ultimate goal for a proper integral package design. Another
important issue, particularly for designing parallel quantum chem-
istry programs, is the clean separation of integral evaluation objects
from the rest of the code. This allows for the objects to concentrate
purely on the task of integral evaluation without additional book-
keeping and decisions related to other nonintegral quantities. An
example of the latter situation would be the passing of Fock density
matrix elements to the integral evaluation routines for screening
purposes during the SCF procedure. This adds more functional-
ity to the integral objects but at the same time brings down their
performance. As a general rule, the more functional generality the
computational objects have the slower their performance. The ACES
III integral evaluation routines are pure objects in the sense that
they know nothing about quantities that are not strictly related to
the integral calculation process, and very good CPU performance
in integral evaluation has been achieved using these objects in the
parallel ACES III framework.

Although integral evaluation algorithms have by now been
extensively and exhaustively discussed in the literature, integral

evaluation research is still far from being over. In recent years,
several groups have tried to add to and/or improve certain aspects
of integral computation. In connection with the Rys quadrature
method, useful integral transforms have been established for certain
classes of molecular property integrals.14 Another effort in reduc-
ing the overall integral evaluation FLOP count, also related to the
Rys quadrature method, was geared toward improvement of evalu-
ating integrals between highly contracted basis sets.15 In essence it
combines a 5-term 6D ERI recursion formula with the contraction
process to achieve a more favorable FLOP count during ERI eval-
uation. Recent papers by Japanese researchers16, 17 showed overall
integral evaluation timing improvements when considering eval-
uation of the entire set of integrals. Improvement is achieved by
realizing that large molecular structures are composed of only a
handful of different atoms, hence those basis set quantities relevant
for integral evaluation which are independent of the atomic coordi-
nates can be calculated beforehand in two-index loops between all
possible atom pairs and stored. Savings in calculations can occur for
example during the integral contraction steps, where the contraction
coefficients are independent of the atomic coordinates and can hence
be premultiplied for all atomic pairs. For our ACES III integral pack-
age, this prestoring scheme of large amounts of data seemed to be
less attractive, not only because of larger memory demands outside
the integral routines but also because cache-efficient implementa-
tion of the 4-index contraction scheme is best realized in quarter
transformation steps, as explained later on in the integral contraction
section, requiring separate handling of the contraction coefficients.

Integral and Integral Derivative Evaluation

Electron Repulsion Integrals

We will start our integral evaluation discussion on the two-electron
repulsion integrals (ERI). All basic concepts will be introduced here.
Formulas for the one-electron integrals are very similar to the ones
for the ERIs but much simpler. A Cartesian ERI integral block
is defined as a set of six-dimensional integrals between four sets
of Cartesian gaussian type orbital (CGTO) functions over the two
electron coordinates r1 and r2:

ERIblock =
∫∫

φA
α,La

(r1)φ
B
β ,Lb

(r1)
1

|r1 − r2|φ
C
γ ,Lc

× (r2)φ
D
δ,Ld

(r2)dr1dr2. (1)

Each set φA
α,La

of CGTOs is characterized by a set of nuclear coor-
dinates A = Ax , Ay, Az, a set of primitive or contracted gaussian
exponents α = α1, α2, . . . and a set of xyz monomials correspond-
ing to a particular angular momentum quantum number La. Each
Cartesian ERI integral block is thus labeled by four angular momen-
tum quantum numbers corresponding to the four sets of CGTOs
involved and its dimensionality is given as the product between the
four CGTO set cardinalities (number of exponents times number of
xyz monomials).

Journal of Computational Chemistry DOI 10.1002/jcc

Electronic Integrals and their Generalized Derivatives 3

An unnormalized primitive CGTO is given by the following
expression:

φA
α,�a ,ma ,na

(r) = (x − Ax)
�a (y − Ay)

ma (z − Az)
na e−α(r−A)2

(2)

Hence each ERI in the block in (1) is characterized by four sets
of nuclear coordinates, four exponents, and four sets of x�ymzn

monomial exponents � + m + n = L

ERI =
∫∫

φA
α,�a ,ma ,na

(r1)φ
B
β,�b ,mb ,nb

(r1)
1

|r1 − r2|φ
C
γ ,�c ,mc ,nc

× (r2)φ
D
δ,�d ,md ,nd

(r2)dr1dr2. (3)

The first step toward any ERI evaluation is the introduction of the
Laplace transform:

1

|r1 − r2| = 2

π1/2

∫ ∞

0
e−(r1−r2)2u2

du, (4)

which, when inserted into eq. (3) gives

ERI = 2

π1/2

∫ ∞

0
I∗
x (�a, �b, �c, �d , u) · I∗

y (ma, mb, mc, md , u)

· I∗
z (na, nb, nc, nd , u) du, (5)

or, dropping the reference to the individual �, m, and n monomial
exponents for simplification

ERI = 2

π1/2

∫ ∞

0
I∗
x (a, b, c, d, u) ·I∗

y (a, b, c, d, u) ·I∗
z (a, b, c, d, u)du,

(6)

with each of the Cartesian component unscaled (starred) 2D
integrals given as (showing only the x-component):

I∗
x (a, b, c, d, u) =

∫∫
φ

Ax
α,�a

(x1)φ
Bx
β,�b

(x1)φ
Cx
γ ,�c

(x2)φ
Dx
δ,�d

(x2)

e−u2(x1−x2)2
dx1dx2 (7)

where

φ
Ax
α,�a

(x1) = (x1 − Ax)
�a e−α(x1−Ax)

2
(8)

and similar expressions for the others. Using the well-known gaus-
sian product theorem, where the product of the exponential parts of
two GTOs centered on A and B can be written as a single exponential
centered at a point P on the line joining A with B

e−α(r−A)2
e−β(r−B)2 = EABe−p(r−P)2

, (9)

with the new exponent p and the center P being given as

p = α + β, (10)

P = αA + βB
α + β

, (11)

and the exponential prefactor EAB as

EAB = e− αβ
α+β

·(A−B)2
, (12)

we can rewrite the expression for the I∗
x (a, b, c, d, u) integral in eq.

(7) as

Ex
ABEx

CD

∫∫
(x1 − Ax)

a(x1 − Bx)
b(x2 − Cx)

c(x2 − Dx)
de−p(x1−Px)

2

e−q(x2−Qx)
2
e−u2(x1−x2)2

dx1dx2, (13)

where q, Q and Ex
CD are the respective new exponent, combined

center and x component of the exponential prefactor for the gaussian
exponential product between the centers C and D given by analogous
expressions as in eqs. (10), (11), and (12). Evaluation of the simplest
2D integral leads to:

I∗
x (0, 0, 0, 0, u) = Ex

ABEx
CDe

−ρu2

ρ+u2 ·(Px−Qx)
2

π(ρ + u2)−1/2(p + q)−1/2,
(14)

where ρ denotes the following exponent ratio

ρ = pq

p + q
. (15)

Introducing a new variable t,

t2 = u2

ρ + u2
(16)

u2 = t2ρ

1 − t2
(17)

du = √
ρ(1 − t2)−3/2dt (18)

we obtain

I∗
x (0, 0, 0, 0, t) = Ex

ABEx
CDe−ρt2·(Px−Qx)

2
π(1 − t2)1/2

× ρ−1/2(p + q)−1/2, (19)

Defining now rescaled 2D integrals

Ix(a, b, c, d, t) = I∗
x (a, b, c, d, t)

I∗
x (0, 0, 0, 0, t)

(20)

with similar expressions for the y and z component, we get a new
expression of the ERI from eq. (6) in terms of integration over t
alone, using also the relation between du and dt in eq. (18) and the
fact that if the variable u ranges from 0 to ∞, then t ranges from
0 to 1:

ERI = 2π5/2

pq
√

p + q
EABECD

∫ 1

0
e−ρt2·(P−Q)2

Ix(a, b, c, d, t)·

Iy(a, b, c, d, t) · Iz(a, b, c, d, t)dt. (21)

Journal of Computational Chemistry DOI 10.1002/jcc

4 Flocke and Lotrich • Vol. 00, No. 0 • Journal of Computational Chemistry

This last equation for the ERIs is the basis for applying the Rys
quadrature scheme. Any integral of the form

∫ 1

0
P(t)e−Tt2

dt =
∑

n

P(tn)wn (22)

involving a polynomial P(t) in t can be evaluated exactly by an
n-point numerical quadrature formula using n roots tn and weights
wn whose values depend on the exponential parameter T . In the
above ERI equation we identify T as:

T = ρ(P − Q)2. (23)

The 2D integrals are polynomials in t, which can clearly be seen
from the vertical and horizontal recursion relations (VRR and HRR,
respectively), which we will now state. Differentiating the expres-
sion for the 2D integrals in eq. (13) with respect to the two variables
x1 and x2 and regrouping terms we arrive at the following basic 2D
integral relations:

Ix(a + 1, b, c, d, t) = C00x · Ix(a, b, c, d, t)

+ a · B10 · Ix(a − 1, b, c, d, t)

+ b · B10 · Ix(a, b − 1, c, d, t)

+ c · B00 · Ix(a, b, c − 1, d, t)

+ d · B00 · Ix(a, b, c, d − 1, t) (24)

Ix(a, b + 1, c, d, t) = C′
00x · Ix(a, b, c, d, t)

+ a · B10 · Ix(a − 1, b, c, d, t)

+ b · B10 · Ix(a, b − 1, c, d, t)

+ c · B00 · Ix(a, b, c − 1, d, t)

+ d · B00 · Ix(a, b, c, d − 1, t) (25)

Ix(a, b, c + 1, d, t) = D00x · Ix(a, b, c, d, t)

+ a · B00 · Ix(a − 1, b, c, d, t)

+ b · B00 · Ix(a, b − 1, c, d, t)

+ c · B01 · Ix(a, b, c − 1, d, t)

+ d · B01 · Ix(a, b, c, d − 1, t) (26)

Ix(a, b, c, d + 1, t) = D′
00x · Ix(a, b, c, d, t)

+ a · B00 · Ix(a − 1, b, c, d, t)

+ b · B00 · Ix(a, b − 1, c, d, t)

+ c · B01 · Ix(a, b, c − 1, d, t)

+ d · B01 · Ix(a, b, c, d − 1, t), (27)

where the coefficients are expressions in terms of t2:

C00x = (Px − Ax) − q(Px − Qx)

p + q
t2

C′
00x = (Px − Bx) − q(Px − Qx)

p + q
t2

D00x = (Qx − Cx) − p(Px − Qx)

p + q
t2

D′
00x = (Qx − Dx) − p(Px − Qx)

p + q
t2

B00 = 1

2(p + q)
t2

B10 = 1

2p
− q

2p(p + q)
t2

B01 = 1

2q
− p

2q(p + q)
t2. (28)

The VRR equations as stated in ref. 4 are obtained from eqs. (24)
and (26) by setting b, d = 0 giving:

Ix(a + 1, 0, c, 0, t) = C00x · Ix(a, 0, c, 0, t)

+ a · B10 · Ix(a − 1, 0, c, 0, t)

+ c · B00 · Ix(a, 0, c − 1, 0, t) (29)

Ix(a, 0, c + 1, 0, t) = D00x · Ix(a, 0, c, 0, t)

+ a · B00 · Ix(a − 1, 0, c, 0, t)

+ c · B01 · Ix(a, 0, c − 1, 0, t). (30)

The HRR equations we get by subtracting eq. (24) from eq. (25) and
eq. (26) from eq. (27):

Ix(a, b+1, c, d, t) = Ix(a + 1, b, c, d, t)+(Ax − Bx) · Ix(a, b, c, d, t)
(31)

Ix(a, b, c, d+1, t)= Ix(a, b, c + 1, d, t)+(Cx − Dx) · Ix(a, b, c, d, t).
(32)

The starting value for applying the VRR equations is the 2D integral
Ix(0, 0, 0, 0, t), which due to its definition in eq. (20) is equal to 1.
A very important difference between the VRR and the HRR is that
in the former the coefficients are dependent on the individual gaus-
sian exponents through the variables p and q, whereas in the HRR
only center coordinate differences appear. This has lead to applica-
tions of the HRR equations after all the exponent contraction steps
have been performed, resulting in considerable time savings during
the integral evaluation. To apply the HRR at contracted level one
needs to evaluate via the VRR all x, y, z-component 2D integrals
I(e, f , tn) = I(e, 0, f , 0, tn) for all the n quadrature roots tn with
e = max(a, b), . . . , a + b and f = max(c, d), . . . , c + d being the

Journal of Computational Chemistry DOI 10.1002/jcc

Electronic Integrals and their Generalized Derivatives 5

angular momentum ranges needed for both electrons. The neces-
sary primitive ERIs are then calculated using the n-point quadrature
formula from eq. (22):

ERI = 2π5/2

pq
√

p + q
EABECD

∑
n

Ix(e, f , tn)·Iy(e, f , tn)·Iz(e, f , tn)·wn.

(33)

Since e and f represent angular momentum ranges, certain x and
y monomial exponents will be common to different z monomial
exponents. Hence certain IxIy products in eq. (33) are common to
different Iz factors and can be reused, if one designs the assembly
of the primitive ERIs such that the outer loops run over the x and y
exponents while the inner one loops over all possible z exponents
allowed by the angular momentum ranges e and f . This is the basis
of the reduced multiplication scheme of the Rys quadrature.10

General n-th Order Electron Repulsion Integral Derivatives

Let us now focus on evaluation of general open-ended n-th order
ERI derivatives. We could start using eq. (21), however, dependence
of the prefactors and the gaussian exponent on center coordinates
complicates matters. Better to use eq. (6). Again we show the deriva-
tion for the x-component only, the other two being analogous. For
derivative on a center E we have

∂

∂Ex
ERI = 2

π1/2

∫ ∞

0

∂I∗
x (a, b, c, d, u)

∂Ex
· I∗

y (a, b, c, d, u)·

I∗
z (a, b, c, d, u)du. (34)

From the 2D integral expression in eq. (13), the 2D integral
derivative becomes

∂I∗
x (a, b, c, d, u)

∂Ex
= I∗

x (a, b, c, d, u)E

= δAE
[− aI∗

x (a − 1, b, c, d, u) + 2αI∗
x (a + 1, b, c, d, u)

]
+ δBE

[− bI∗
x (a, b − 1, c, d, u) + 2βI∗

x (a, b + 1, c, d, u)
]

+ δCE
[− cI∗

x (a, b, c − 1, d, u) + 2γ I∗
x (a, b, c + 1, d, u)

]
+ δDE

[− dI∗
x (a, b, c, d − 1, u) + 2δI∗

x (a, b, c, d + 1, u)
]
. (35)

Double differentiation leads to:

∂2I∗
x (a, b, c, d, u)

∂Ex∂Fx

= δAF
[− aI∗

x (a − 1, b, c, d, u)E + 2αI∗
x (a + 1, b, c, d, u)E

]
+ δBF

[− bI∗
x (a, b − 1, c, d, u)E + 2βI∗

x (a, b + 1, c, d, u)E
]

+ δCF
[− cI∗

x (a, b, c − 1, d, u)E + 2γ I∗
x (a, b, c + 1, d, u)E

]
+ δDF

[− dI∗
x (a, b, c, d − 1, u)E + 2δI∗

x (a, b, c, d + 1, u)E
]
,

(36)

which, after inserting eq. (35) becomes

∂2I∗
x (a, b, c, d, u)

∂Ex∂Fx
= linear function of the original I∗

x ’s

= Fx
(
I∗
x

)
. (37)

Letting Fx , Fy, Fz stand for the linear functions in I∗
x , I∗

y , I∗
z

obtained for any particular differentiation sequence Dx , Dy, Dz (any
order, any center sequence) on the respective x, y, z-component 2D
integrals we can thus write any differentiated ERI as

DxDyDzERI = 2

π1/2

∫ ∞

0
Fx

(
I∗
x

) · Fy
(
I∗
y

) · Fz
(
I∗
z

)
du. (38)

Since the F are linear in I∗, we can divide all I∗ by the corresponding
rescaling factors I∗(0, 0, 0, 0, t) as shown in eq. (20) and have, after
changing variables from u to t

Fx
(
I∗
x

) = I∗
x (0, 0, 0, 0, t) · Fx(Ix), (39)

since I∗
x (0, 0, 0, 0, t) represents just a scaling number whose value

is given in eq. (19). Hence the working equation for the derivative
ERIs is similar to eq. (21)

DxDyDzERI = 2π5/2

pq
√

p + q
EABECD

∫ 1

0
e−ρt2·(P−Q)2

× Fx(Ix) · Fy(Iy) · Fz(Iz)dt (40)

and is conveniently evaluated using the Rys quadrature technique:

2π5/2

pq
√

p + q
EABECD

∑
n

Fx[Ix(a, b, c, d, tn)] · Fy[Iy(a, b, c, d, tn)]·

× Fz[Iz(a, b, c, d, tn)] · wn. (41)

Evaluation of the final derivative 2D integrals F(I) is done by first
setting up the undifferentiated 2D integrals I(a+∂a, b+∂b, c+∂c, d+
∂d , t) with increased angular momenta by ∂a, ∂b, ∂c, ∂d due to differ-
entiations on the respective centers A, B, C, D using the VRR and
HRR relations and applying the differentiation sequence D for each
Cartesian component recursively. Note that the presence of deriva-
tive operators on centers A, B, C, D prevents the use of the HRR at
contracted level. A partial application of the HRR at contraction
level either on the bra or ket side of the ERI can still be done, how-
ever, in special situations in which the derivative operators operate
only on the the bra or ket side.

General n-th Order Nuclear Attraction Integral Derivatives

While formulation of general n-th order derivatives of the one-
electron overlap and kinetic energy integrals is straightforward, an
attractive recursive formulation for the general n-th order derivatives
of the one-electron nuclear attraction integrals (NAI) is somewhat

Journal of Computational Chemistry DOI 10.1002/jcc

6 Flocke and Lotrich • Vol. 00, No. 0 • Journal of Computational Chemistry

more complicated due to the presence of the nuclear center(s). Cru-
cial in this case is the order in which the partial derivatives have to
be applied to the basic 1D integrals.

Using the same notation as in eq. (3), a simple primitive Cartesian
three center NAI integral between two CGTOs is defined as

NAI =
∫

φA
α,�a ,ma ,na

(r)
−ZC

|r − C|φ
B
β,�b ,mb ,nb

(r)dr, (42)

where ZC is the nuclear charge at center C. Using the Laplace
transform

1

|r − C| = 2

π1/2

∫ ∞

0
e−(r−C)2u2

du, (43)

we get in analogy to eq. (6)

NAI = −ZC
2

π1/2

∫ ∞

0
I∗
x (a, b, C, u) · I∗

y (a, b, C, u) · I∗
z (a, b, C, u)du,

(44)

with each of the unscaled 1D integrals given as (only x-component
shown):

I∗
x (a, b, C, u) =

∫
(x − Ax)

a(x − Bx)
be−α(x−Ax)

2
e−β(x−Bx)

2

× e−u2(x−Cx)
2
dx. (45)

The gaussian product theorem from eq. (9) transforms this into

I∗
x (a, b, C, u) = Ex

AB

∫
(x − Ax)

a(x − Bx)
be−p(x−Px)

2
e−u2(x−Cx)

2
dx.

(46)

The value of the simplest 1D integral is

I∗
x (0, 0, C, u) = Ex

ABe
−pu2

p+u2 ·(Px−Cx)
2
√

π

p + u2
, (47)

which after introduction of the same variable t as defined in eq. (16)
leads to

I∗
x (0, 0, C, t) = Ex

ABe−pt2·(Px−Cx)
2

√
π(1 − t2)

p
. (48)

Defining the rescaled 1D integrals

Ix(a, b, C, t) = I∗
x (a, b, C, t)

I∗
x (0, 0, C, t)

(49)

we can reformulate eq. (44) as

NAI = −ZC
2π

p
EAB

∫ 1

0
e−pt2·(P−C)2

Ix(a, b, C, t) · Iy(a, b, C, t)

· Iz(a, b, C, t)dt. (50)

The exponential parameter T is thus

T = p(P − C)2. (51)

The VRR relations for the 1D integrals are4

Ix(a + 1, b, C, t) = R1x · Ix(a, b, C, t) + a · R2 · Ix(a − 1, b, C, t)

+ b · R2 · Ix(a, b − 1, C, t) (52)

Ix(a, b + 1, C, t) = R′
1x · Ix(a, b, C, t) + a · R2 · Ix(a − 1, b, C, t)

+ b · R2 · Ix(a, b − 1, C, t) (53)

with VRR coefficients

R1x = (Px − Ax) − (Px − Cx)t
2

R′
1x = (Px − Bx) − (Px − Cx)t

2

R2 = 1 − t2

2p
. (54)

The corresponding HRR formula is

Ix(a, b + 1, C, t) = Ix(a + 1, b, C, t) + (Ax − Bx) · Ix(a, b, C, t).
(55)

Let us now apply a center differentiation operator on a NAI integral.
We get from eq. (44)

∂

∂Ex
NAI = −ZC

2

π1/2

∫ ∞

0

∂I∗
x (a, b, C, u)

∂Ex

· I∗
y (a, b, C, u) · I∗

z (a, b, C, u)du. (56)

From the definition of the 1D integral in eq. (45) its derivative is

∂I∗
x (a, b, C, u)

∂Ex
= I∗

x (a, b, C, u)E

= δAE
[− aI∗

x (a − 1, b, C, u) + 2αI∗
x (a + 1, b, C, u)

]
+ δBE

[− bI∗
x (a, b − 1, C, u) + 2βI∗

x (a, b + 1, C, u)
]

+ δCE
2pt2

1 − t2

[
I∗
x (a + 1, b, C, u) + (Ax − Cx)I

∗
x (a, b, C, u)

]
,

(57)

Journal of Computational Chemistry DOI 10.1002/jcc

Electronic Integrals and their Generalized Derivatives 7

where we have used the expression for variable u in eq. (17) and the
identity x−Cx = x−Ax +Ax −Cx . The last term can be modified by
expanding the I∗

x (a + 1, b, C, u) integral in terms of lower angular
momentum integrals using the VRR in eq. (52) and inserting the
values of the VRR coefficients to give

I∗
x (a, b, C, u)E

= δAE
[− aI∗

x (a − 1, b, C, u) + 2αI∗
x (a + 1, b, C, u)

]
+ δBE

[− bI∗
x (a, b − 1, C, u) + 2βI∗

x (a, b + 1, C, u)
]

+ δCEt2[2p(Px − Cx)I
∗
x (a, b, C, u) + aI∗

x (a − 1, b, C, u)

+ bI∗
x (a, b − 1, C, u)

]
. (58)

This last equation is much more convenient, as it does not involve
a larger angular momentum on either sites a or b due to possible
derivatives on the nuclear attraction center. However, the presence
of the term (Px − Cx) on the r.h.s. of the equation leads to extra
terms when higher derivatives are involved. Double differentiation
gives:

∂

∂Fx

(
∂I∗

x (a, b, C, u)

∂Ex

)

= ∂

∂Ex

(
∂I∗

x (a, b, C, u)

∂Fx

)

= δAF
[− aI∗

x (a − 1, b, C, u)E + 2αI∗
x (a + 1, b, C, u)E

]
+ δBF

[− bI∗
x (a, b − 1, C, u)E + 2βI∗

x (a, b + 1, C, u)E
]

+ δCFt2[2p(Px − Cx)I
∗
x (a, b, C, u)E + aI∗

x (a − 1, b, C, u)E

+ bI∗
x (a, b − 1, C, u)E

]
+ δCFt2(2αδAE + 2βδBE − 2pδCE)I∗

x (a, b, C, u), (59)

showing that the second derivative does not only depend on the first
derivative but also on the original undifferentiated 1D integral if dif-
ferentiation on the nuclear center is involved. To avoid proliferation
of terms it is thus mandatory to perform the differentiation of each
center separately to the desired order. Applying the last equation
several times we obtain two differentiation schemes, one for the
nuclear center

∂m

∂Cm
x

I∗
x (a, b, C, u)E = at2 ∂m−1

∂Cm−1
x

I∗
x (a − 1, b, C, u)E

+ bt2 ∂m−1

∂Cm−1
x

I∗
x (a, b − 1, C, u)E

+ 2pt2
[
(Px − Cx)

∂m−1

∂Cm−1
x

I∗
x (a, b, C, u)E

+(1 − m)
∂m−2

∂Cm−2
x

I∗
x (a, b, C, u)E

]
, (60)

with subscript E denoting any past differentiation steps not involving
the nuclear center, and the other for the gaussian centers

∂m

∂Fm
x

I∗
x (a, b, C, u)E = δAF

[
−a

∂m−1

∂Fm−1
x

I∗
x (a − 1, b, C, u)E

+ 2α
∂m−1

∂Fm−1
x

I∗
x (a + 1, b, C, u)E

]

+ δBF

[
−b

∂m−1

∂Fm−1
x

I∗
x (a, b − 1, C, u)E

+ 2β
∂m−1

∂Fm−1
x

I∗
x (a, b + 1, C, u)E

]
, (61)

where F can be any one of the two gaussian centers A and B and
E symbolizes now any past differentiation steps including those
involving the nuclear center. Note in particular that each nuclear
differentiation step in eq. (60) increases the final differentiated 1D
integral polynomial by t2, a fact that has to be taken into consid-
eration when evaluating the number of necessary quadrature roots.
A special situation arises if the nuclear attraction center coincides
with one of the gaussian centers. In these cases eq. (60) cannot be
applied. Instead one can reformulate the derivative sequence in such
a way that only differentiation on the gaussian center different from
the nuclear attraction center in involved. We have the following 1D
integral identities

d

dAx
I∗
x (a, b, A, u) = − d

dBx
I∗
x (a, b, A, u) (62)

d

dBx
I∗
x (a, b, B, u) = − d

dAx
I∗
x (a, b, B, u) (63)

and thus

dm

dAm
x

dn

dBn
x

I∗
x (a, b, A, u) = (−1)m dm+n

dBm+n
x

I∗
x (a, b, A, u)

dm

dAm
x

dn

dBn
x

I∗
x (a, b, B, u) = (−1)n dm+n

dAm+n
x

I∗
x (a, b, B, u), (64)

which we can evaluate using eq. (61). Following the same logic as
for the general n-th order ERI derivative, we have for the general
n-th order NAI derivative

DxDyDzNAI = −ZC
2

π1/2

∫ ∞

0
Fx

(
I∗
x

) · Fy
(
I∗
y

) · Fz
(
I∗
z

)
du, (65)

where the D symbolize any differentiation sequence. Using again
the linearity of F in terms of the I∗’s we have

Fx
(
I∗
x

) = I∗
x (0, 0, C, t) · Fx(Ix) (66)

Journal of Computational Chemistry DOI 10.1002/jcc

8 Flocke and Lotrich • Vol. 00, No. 0 • Journal of Computational Chemistry

and eq. (65) transforms to

DxDyDzNAI = 2π

p
EAB

∫ 1

0
ept2·(P−C)2Fx(Ix) · Fy(Iy) · Fz(Iz)dt.

(67)

Rys Quadrature

In this section we state briefly the gaussian quadrature procedure
used for the Rys weight function. The exposition is rather sketchy,
for details the reader is referred to the cited references. The general
gaussian quadrature theory states that, given a definite integral with
integrand of the form polynomial P(x) times a weight function W(x),
its exact value can be found by summing up products of certain
weights wn and polynomial values at roots xn

∫ b

a
P(x)W(x)dx =

N∑
n=1

P(xn)wn (68)

for all polynomials of order up to 2N − 1. The roots and weights
can be found by constructing a set of monic (coefficient of largest
power of x equals 1) polynomials pi, which are orthogonal over the
weight function W(x)

〈pi|pj〉 =
∫ b

a
W(x)pi(x)pj(x) dx = 0, i �= j (69)

Because of this orthogonality property, these polynomials obey a
3-term recurrence relation

p0(x) = 1

p1(x) = (x − a0)

pi(x) = (x − ai−1)pi−1(x) − bi−1pi−2(x), i > 1 (70)

where the recursion coefficients are, using the notation in eq. (69)

ai = 〈xpi|pi〉
〈pi|pi〉 i = 0, 1, . . .

bi = 〈pi|pi〉
〈pi−1|pi−1〉 i = 1, 2, . . . (71)

Setting up the N × N tridiagonal matrix

T =




a0
√

b1√
b1 a1

√
b2

· ·
· ·√

bN−2 aN−2
√

bN−1√
bN−1 aN−1




(72)

the roots can now be obtained18, 19 as the eigenvalues of T and the
associated weights are evaluated using the first component c1n of
each eigenvector

wn = c2
1n

∫ b

a
W(x)dx. (73)

Hence for obtaining the roots and weights all that is needed is the
values of the recurrence coefficients from eq. (71) and the value of
the integral on the r.h.s. of eq. (73). For some weights and specific
integration limits, the associated set of orthogonal polynomials and
the values of the recurrence coefficients are very well known.20

These are the so called classical cases. The situation is different if
one encounters a weight function different from the classical weights
and/or the integration limits differ from the classical cases. Here
we need to evaluate first the a’s and b’s defining the orthogonal
polynomials. A straightforward approach would be to expand each
polynomial pi(x) in terms of all powers of x and to evaluate the
recurrence coefficients in eq. (71) using the 2N moments of the
weight function

∫ b

a
xiW(x)dx, i = 0, 1, . . . , 2N − 1 (74)

This approach turns out to be extremely unstable numerically. To get
a numerically stable procedure,21 it is best to represent the polyno-
mials pi(x) in terms of a set of auxiliary polynomials πi(x), obeying
a 3-term recurrence relation with known coefficients α and β

π0(x) = 1

π1(x) = (x − α0)

πi(x) = (x − αi−1)πi−1(x) − βi−1πi−2(x), i > 1. (75)

Then, using the 2N−1 modified moment values involving the weight
W(x)

µi =
∫ b

a
πi(x)W(x)dx, i = 0, 1, . . . , 2N − 1 (76)

a very elegant algorithm due to Wheeler22 can be used to evalu-
ate the a’s and b’s in terms of the α’s and β’s and the modified
moments µi. Details of Wheeler’s algorithm can be found in refs.
23 and 24. Important to note is that the algorithm is numerically very
stable if the set of polynomials πi(x) is such that they represent a
set of orthogonal polynomials for some weight function resembling
the weight W(x) in the integration range of interest. Note that the
integration range for the definition of the orthogonal πi(x) can be
different from ours.

From the discussions in the previous section, we know that
both the ERI and NAI integrals as well as their general n-th order
derivatives can all be expressed as an integral of the form

∫ 1

0
P(t2)e−Tt2

dt. (77)

Journal of Computational Chemistry DOI 10.1002/jcc

Electronic Integrals and their Generalized Derivatives 9

Performing the variable substitution x = t2 this integral is equivalent
to

∫ 1

0
P(x)

e−Tx

2
√

x
dx. (78)

from which we identify the Rys weight function as WRys(x) =
e−Txx−1/2. This weight function is the same as one of the classi-
cal generalized T -scaled Laguerre weights Wα

Laguerre(x) = e−Txxα

with associated set of orthogonal generalized T -scaled Laguerre
polynomials Lα

i (Tx) defined over the integration range x ∈ [0, ∞]
and exponent range α > −1:

∫ ∞

0
Wα

Laguerre(x)L
α
i (Tx)Lα

j (Tx)dx = 0, i �= j. (79)

Clearly WRys(x) = W−1/2
Laguerre(x), however the nonmatching integra-

tion limits [0, 1] for WRys(x) and [0, ∞] for W−1/2
Laguerre(x) prevents

the direct use of the generalized T -scaled Laguerre recursion coef-
ficients for setting up the tridiagonal matrix in eq. (72). The monic
generalized T -scaled Laguerre polynomials obey the following
3-term recursion relation:

Lα
0 (Tx) = 1

Lα
1 (Tx) =

(
x − 1 + α

T

)

Lα
i (Tx) =

(
x − 2i + α − 1

T

)
Lα

i−1(Tx)

− (i − 1)(i + α − 1)

T2
Lα

i−2(Tx), i > 1. (80)

and the set L−1/2
i (Tx) with α = −1/2 will constitute our set of aux-

iliary polynomials in eq. (75) with the 3-term recursion coefficients
obtained from eq. (80):

α0 = 1

2T
αi−1 = 4i − 3

2T
βi−1 = (i − 1)(2i − 3)

2T2

i = 2, 3, . . . , 2N − 1 (81)

The needed modified moments from eq. (74) can be given in terms
of values of the α = +1/2 monic generalized T -scaled Laguerre
polynomials at the scaling factor T

µ0 =
∫ 1

0

e−Tx

2
√

x
dx = F0(T)

µi =
∫ 1

0
L−1/2

i (Tx)
e−Tx

2
√

x
dx = − e−T

2T
L+1/2

i−1 (T)dx,

i = 1, 2, . . . , 2N − 1. (82)

Note that all L+1/2
i−1 (T) values and thus all modified moments µi can

be very easily obtained from the general recursion in (80) by setting

α = +1/2 and x = 1. We will refer to the use of the Laguerre
polynomials as the Laguerre case.

As T gets progressively smaller the use of the Laguerre polyno-
mials becomes problematic. For small T we have to use a different
set of auxiliary polynomials. A very convenient set consists of the
shifted Jacobi polynomials G(p, q, x) with p = q = 1/2. These
polynomials obey the following 3-term recursion relation:

G0

(
1

2
,

1

2
, x

)
= 1

G1

(
1

2
,

1

2
, x

)
= (x − α0)

Gi

(
1

2
,

1

2
, x

)
= (x − αi−1)Gi−1

(
1

2
,

1

2
, x

)

− βi−1Gi−2

(
1

2
,

1

2
, x

)
, i > 1, (83)

with recursion coefficients:

αi = 2i(i + 1/2) − 1/4

(2i + 1/2)2 − 1

βi = i2(i − 1/2)2

(2i − 1/2)2(2i − 3/2)(2i + 1/2)
. (84)

It can be shown that for the modified moments

µi =
∫ 1

0
Gi

(
1

2
,

1

2
, x

)
e−Tx

2
√

x
dx, i = 0, 1, . . . , 2N − 1 (85)

a 3-term recursion relation can be derived

µi+1 = R(i, T)µi + S(i)µi−1, (86)

where

R(i, T) = 2i + 1

2T
+ (2i + 1)

(4i − 1)(4i + 3)

S(i) = 2i(2i + 1)(2i − 1)2

(4i − 3)(4i + 1)(4i − 1)2
. (87)

Upward evaluation of the moments (increasing i) turns out to be very
unstable numerically, hence Miller’s algorithm25 must be applied,
especially since the minimal solution of eq. (86) is the one wanted.
Miller’s algorithm proceeds by downward recursion starting from
a tiny seed value for a large i moment to the zeroth moment and
rescaling the obtained sequence of moments such that µ0 = 1.
The use of the shifted Jacobi polynomials will be referred to as the
Jacobi case.

Journal of Computational Chemistry DOI 10.1002/jcc

10 Flocke and Lotrich • Vol. 00, No. 0 • Journal of Computational Chemistry

Table 1. Absolute Root Differences (
 Root) Between the Quadruple
Precision and Double Precision Values of the Roots for the Jacobi and
Laguerre Quadratures for Several Values of T in the Range 10 ≤ T ≤ 30.

T
 Root # of Roots

Jacobi quadrature
10 5 × 10−14 6
15 9 × 10−12 7
20 7 × 10−10 10
25 2 × 10−7 8
30 1 × 10−5 9

Laguerre quadrature
15 2 × 10−11 10

4 × 10−8 12
2 × 10−2 14

20 6 × 10−13 10
1 × 10−9 12
9 × 10−7 14

25 4 × 10−15 10
5 × 10−13 12
1 × 10−9 14
1 × 10−5 16

30 3 × 10−16 10
1 × 10−14 12
2 × 10−11 14
3 × 10−8 16
8 × 10−5 18

Numerical Considerations on the Rys Quadrature

Both Laguerre and Jacobi Rys quadratures exhibit different numer-
ical properties when implemented on a computer. Both are found
to be very stable in quadruple precision up to a number of roots
N ≤ 30. The main question that remains is how stable are they in
double precision. Using a quadruple precision version of the code as
a standard of reference, Table 1 of absolute root differences between
the quadruple precision and double precision values of the roots has
been established for the most problematic range 10 ≤ T ≤ 30:

The numerical behavior of both quadratures is quite different.
The Jacobi quadrature proceeds in a stable fashion beyond any num-
ber of roots, exhibiting its largest root error for the above number
of root cases in the third column. In other words, for the T = 20
case, the largest root error of 7 × 10−10 occurs when only 10 roots
are evaluated and the error progressively decreases as the number
of roots requested grows. On the other hand the Laguerre quadra-
ture root errors are upper bounds in the number of roots sense.
For example for T = 20, the largest error for 12 requested roots
is 1 × 10−9 and will get progressively larger as the number of
requested roots increases, ultimately resulting in a complete numer-
ical breakdown of the algorithm. For 14 roots the optimum division
line between the two quadrature cases occurs at T = 23 with max-
imum root error of about 1 × 10−8. For 12 roots we have T = 20
with maximum root error of about 1 × 10−9. The absolute weight
error is always less than the corresponding root error and they run
in opposite directions, i.e., the largest root error occurs around the
smallest weight values, a fortunate effect as far as integral accuracy is
concerned.

To generate the roots and weights on the fly for each T in an
efficient way using the above algorithms, several points have to
be observed. First, evaluation of the Jacobi recurrence coefficients
for both the Jacobi polynomials and the modified moments using
eqs. (84) and (87) is costly and is best performed as an include file
with the first 100 terms precalculated and stored. Second, the com-
plete sequence of algorithms (setting up the polynomial recursion
coefficients, evaluation of the modified moments, calculating the
Rys polynomial recurrence coefficients, setting up the tridiagonal
matrix and solving for the roots and weights) are placed in only
one routine without calling subroutines and all possible T ’s must be
handled in one loop inside the routine. Five vectors of size 2N − 1
and 2 vectors of size N are required as working space, making it
very cache efficient to evaluate all the roots and weights at once.
The number of roots and weights N is never very large, hence all
the working arrays stay most of the time in fast cache. Note that
Wheeler’s algorithm, although presented in the literature in terms
of a two-dimensional (2N − 1) × (2N − 1) array,24 can actually be
formulated using just 2 vectors of size 2N − 1.

Integral Contraction Procedure

The general ERI integral contraction is a 4-index transformation
procedure

(rs|tu) =
∑
ijk�

CirCjsCktC�u[ij|k�], (88)

in which primitive ERI integrals [ij|k�] are transformed to contracted
ERI integrals (rs|tu) using the contraction coefficient matrices C.
A straightforward implementation of this equation would consist
in splitting the overall summation into four partial summations,
reusing intermediatly transformed integrals as much as possible.
From a computational performance view, however, this strategy is
not enough, especially for large contracted basis sets. First, there
is usually some structure associated with the contraction columns
in C, which can range from having only one or very few elements
different from zero (the so called segmented contraction case) to hav-
ing all elements equal to some finite number (the fully contracted
case). Furthermore, the segmented case presents itself usually with
all nonzero elements clustered together (shown as stars � below)
and thus we have pictorially the following structure for a C column
corresponding to the r-th contraction

Cr =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�

�

�

�

�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

←− rbegin

←− rend

, (89)

where rbegin and rend denote, respectively, the first and last nonzero
element delimiters. Different columns of C will generally have
different nonzero delimiters, which are passed to the contraction
routine and allow skipping over unnecessary zero multiplications.

Journal of Computational Chemistry DOI 10.1002/jcc

Electronic Integrals and their Generalized Derivatives 11

Note that this scheme handles the uncontracted cases equally well,
which can easily be identified by checking if rbegin = rend, in which
case no contraction loop is ever entered for that particular column.

The second, and more important, observation relates to the num-
ber of cache faults when applying the four partial summations
sequentially one after the other.26 The key idea is to introduce a
small cache-fitting auxillary array containing intermediately trans-
formed integrals which are reused as much as possible before being
thrown out from the cache. To illustrate this issue, consider the
ket side half contraction transformation in eq. (88) involving the
contracted t, u and the primitive k, � indices

[n|ku] =
∑

�

C�u[n|k�], (90)

[n|tu) =
∑

k

Ckt[n|ku], (91)

where n denotes all those indices not taking part in the contraction
(note that n can be quite large, representing not only the bra primitive
or contraction indices but also the complete set of all cartesian mono-
mial quartuples associated with the integrals). The overall number
of quarterly transformed integrals [n|ku] is often much larger than
the cache size. Hence if step (91) is applied after the first quarter
transformation (90) is completed over the entire n range, multiple
cache misses will result with degradation of performance. A much
better way would be to do the following:

Loop over n̄ ranges
Loop over k

{n̄|k} =
∑

�

C�u [n̄|k�]
End loop

[n̄|tu) =
∑

k

Ckt {n̄|k}
End loop

(92)

where now the size of the n̄ range is selected such that the entire
intermediate array {n̄|k} fits into the cache together with the needed

contraction coefficients and the n̄-sections of the primitive and half
transformed integrals. Of course the cache size available for use at
contraction time must be approximately known or at least estimated,
taking into account the possibility of simultaneous cache usage by
other CPU processes.

Further tweaking of contraction performance can be achieved by
realizing that in those cases where the bra and ket indices correspond
to the same atomic center and the same contracted shell, only those
integrals need to be explicitly contracted which belong to the lower
triangles of the corresponding bra and ket index pairs. Also the order
of contraction within a bra or ket pair is important. Looking at the
above example in (92), if the number of k-contractions is larger
than the �-contractions, the k and � loops would be reversed, thus
demanding less space for the intermediate array which in turn allows
for a larger n̄ range. In our code every possible contraction scenario is
handled by a separate piece of code inside one routine, thus avoiding
if-statements in the innermost compute intensive contraction loops.
Overall our experience with the contraction routines, implemented
as outlined above, leads us to conclude that even for fully contracted
basis sets the contraction steps are not the most compute intensive.
In CPU time it ranks below the 2D to 6D cartesian integral assembly
routine, the latter being an inherently cache-nonfriendly procedure
requiring non-unit stride access to relatively large arrays.

Cartesian to Spherical Transformation and HRR at
Contracted Level

Once integrals over Cartesian GTOs have been calculated, one needs
to transform them to integrals over spherical GTOs. The mono-
mial basis {xyz} of angular momentum L is thereby transformed
into the spherical basis {rY} consisting of a radial part r and a
spherical harmonic part Y labeled by magnetic quantum numbers
M = −L, −L + 1, . . . , L − 1, L. In matrix form, we write this as

rY = xyz · Tsph. (93)

The Cartesian → spherical transformation matrix Tsph is |xyz|×|rY |
dimensional and its individual entries can be obtained from the {rY}
expansion formula below in terms of the monomial basis {xyz}:

rYL
M = |M|!S

2L
(

2L − 2
[

L−|M|
2

]
− 1

)
!!

x2�−2i+|M|−δy2k−2�+2i+δzL−|M|−2k

S =

[|M|−δ
2

]∑
i=0

[
L−|M|

2

]∑
j=0

j∑
k=0

k∑
�=0

(−1)i+j(2L − 2j)!
(2i+δ)!(|M| − 2i− δ)!(L − j)!(L− |M| − 2j)!(j − k)!�!(k − �)! , (94)

where δ equals 1 for M < 0 and 0 for M ≥ 0 and [] denotes the
integer part. Although (94) looks formidable it is actually quite easy
to implement, the only important thing to remember here is not to
predetermine and use factorials and double factorials, but rather to
evaluate the monomial prefactors as a series of multiplications of

appropriate fractions. In this way, overflow of integers and loss of
accuracy of the reals is avoided and Cartesian to spherical transfor-
mations of very large angular momentum functions (L > 20) are
possible. In our integral package, the transformation turns out to
require almost negligible time and is always performed on the fly.

Journal of Computational Chemistry DOI 10.1002/jcc

12 Flocke and Lotrich • Vol. 00, No. 0 • Journal of Computational Chemistry

Table 2. % of Non-Zero Elements in Thrr and Tsph Matrices for Equal
Angular Momenta a = b.

a Thrr Tsph

2 11.6 26.7
4 5.9 20.7
6 4.2 19.2
8 3.4 18.4

10 3.0 17.7

Let us now turn our attention to the HRR at the contracted level.
Given two angular momentum quantum numbers a and b, the HRR
at the contracted level represents a matrix Thrr that brings inte-
grals from one direct product angular momentum monomial basis
{xyz}e0 = {xyz}e ⊗ 1 to another {xyz}ab = {xyz}a ⊗ {xyz}b, where e
denotes the angular momentum range e = a, a + 1, . . . , a + b:

xyzab = xyze0 · Thrr . (95)

The assembly of Thrr can be broken down to several elementary
HRR steps, in which each step decreases the e angular momentum
range by 1 and increases b by 1:

xyze−1,b+1 = xyze,b · Tstep. (96)

Clearly then

Thrr =
∏
steps

Tstep. (97)

From the HRR relation in eq. (31), we see that each HRR step
combines only up to two different basis elements of xyze,b for each
new basis element of xyze−1,b+1. The resulting matrix Tstep is thus
very sparse having at most two entries for each column. But also
the final Thrr matrix is considerably sparse, which is shown in Table
2 for several values of a = b together with the sparseness in %
of non-zero elements of the corresponding spherical transformation
matrices.

The degree of sparseness for Thrr increases even further if one or
more of the coordinate component differences in the HRR equations
in (31) is equal to zero. Note that a in eq. (95) can by itself be
an angular momentum range. Efficient coding of 3-center overlap
integrals require for example two HRR procedures in which the total
angular momentum f = a + b + c is decomposed first to separate
angular momentum c followed by separation of angular momentum
b:

xyze0,c = xyzf 00 · TI
hrr

xyzabc = xyze0,c · TII
hrr (98)

At implementation level there are two possible approaches. The
first one is to perform each spherical and each HRR transformation

separately on a set of integrals. This allows for usage of the sparse-
ness of both Thrr and Tsph. The second approach would be to first
combine both types of matrices and to perform the integral transfor-
mation with a combined matrix. Unfortunately the combined matrix
is no longer sparse, in fact only a small fraction of its elements
are zero. For large angular momentum values storage of the large
combined matrices becomes an issue. On the other hand the use of
the combined matrices avoids twice a call to the spherical trans-
formation routine with a large set of intermediate half-transformed
integrals. Our decision for using the first approach with separate rou-
tines handling the spherical and HRR transformations stems mainly
from simplicity: less code is needed to achieve the goal. This is also
justified from the sharp profile output of the entire integral evalu-
ation code: by far the largest portion of CPU time is spent in the
cartesian 2D to 6D integral assembly routine. The spherical and
HRR transformations require only negligible CPU time.

Design and Implementation Details

The design and implementation of the ACES III integral package
was governed by the following requirements. Maximum priority
was set on evaluation speed. This requires efficient cache use and
minimization of subroutine calls (fat routines). Each main integral
evaluation routine, i.e. those that will be called from ACES III,
evaluates one block of integrals according to the definition in eq.
(1). Hence each such routine has in argument only the basic GTO
info: exponents, center coordinates, contraction coefficients, pos-
sibly differentiation orders for each center and flags for internal
screening and Cartesian or spherical integrals for output. No addi-
tional info is passed, like for example density matrix elements, to
perform manipulations for screening judgements inside the integral
code. Such handling of density elements and screening decisions
based on their values is better left to the ACES III level outside the
integral evaluation. Only internal screening for primitive exponent
pairs (and nuclear centers in the case of nuclear attraction integrals)
is done in the integral code. Another feature of the integral code is
the complete absence of common blocks. We felt that the inclusion
of common blocks compromises the use of the integral package as
a universal portable tool that can be used by other programs with-
out possible common block name clashes. Also the use of common
blocks makes it harder to maintain the software. All needed data for
each routine is hence passed as an argument list.

The following scheme shows the basic steps that are performed
for an ERI block (ab|cd) evaluation:

1. Determine angular momentum map L : a, b, c, d → a ≥ b and
c ≥ d

2. Determine contraction indices map C : r, s, t, u → r ≥ s and
t ≥ u

3. Screen primitive exponent pairs αβ, γ δ → {αβ}, {γ δ}
4. Optimum cache {αβ} and {γ δ} block size
5. Loop over {αβ} and {γ δ} blocks:

5a Evaluate block [e0|f0]γ δ,αβ,xyz

5b Move xyz indices → [e0|f0]xyz,γ δ,αβ

5c 1st half contraction → (e0|f0]xyz,γ δ,rs

5d Move rs indices → (e0|f0]xyz,rs,γ δ

5e 2nd half contraction → (e0|f0)xyz,rs,tu

Journal of Computational Chemistry DOI 10.1002/jcc

Electronic Integrals and their Generalized Derivatives 13

6. Reorder contraction indices rstu by C−1

7. Transpose batch (e0|f0)xyz,rstu → (e0|f0)rstu,xyz

8. Generate xyz → rY transformation data
9. Apply HRR on f0 part (n = rstu): (e0|f0)n,xyze,xyzf →

(e0|cd)n,xyze,xyzc,xyzd

10. Spherical transformation on d part → (e0|cd)n,xyze,xyzc,rYd

11. Move rYd indices into n index part using L−1 →
(e0|cd)n,xyze,xyzc

12. Spherical transformation on c part → (e0|cd)n,xyze,rYc

13. Move rYc indices into n index part using L−1 → (e0|cd)n,xyze

14. Apply steps (9) through (13) on e0 part → final ERI block
(ab|cd)

Introduction of L and C in steps (1) and (2) is crucial for efficiency
and optimum performance of the HRR and contraction transforma-
tions. The contraction map is determined such that during each of
the half contraction steps (5c) and (5e) the intermediate quarter con-
traction result requires the least amount of intermediate array space
(see the contraction scheme in eq. (92) and comments therein).

Screening of the primitive exponent pairs is done in the following
way. Consider the ERI formula for a normalized (00|00) integral:

(00|00) = 16(αβγ δ)3/4

pq
√

π(p + q)
EABECDF0

(
pq

p + q
(P − Q)2

)
. (99)

where p, q and the prefactors EAB, ECD are defined in eqs. (10)
and (12) and F0 denotes the 0-th auxiliary integral. We always
have |(00|00)| ≥ |(ab|cd)| hence the rhs of eq. (99) denotes an
upper bound for any integral in (ab|cd). Screening of the expo-
nent pairs proceeds by finding the minimum values of each set
(αmin, βmin, γmin, δmin) and screening first each αβ pair against
the pair γminδmin following by screening of each γ δ pair against
αminβmin. One obvious problem is the determination of (P − Q)2 in
the auxiliary integral argument. Since we know that P is somewhere
on the line joining center A with B and the same holds for Q with
centers C and D, we simply set (P − Q)2 equal to the square of the
minimum distance between the two line segments joining atomic
centers A with B and C with D.

Step (4) tries to decompose both primitive exponent sets into
subblocks of appropriate size such that the most time consuming
step (5a) has minimal cache misses. Note the index rearrangements
in (5b) and (5d) [and also in steps (7), (11), and (13)] such that the
loops in the routines following these steps run over the nonrelevant
integral indices with unit stride. The generation of the Cartesian to
spherical transformation data in step (8) is done in such a way that
duplicates are excluded. For example, if an integral block (pf |ff) is
requested, only one sparse Tsph matrix is generated for the f angu-
lar momentum transformation (the p angular momentum obviously
requires no transformation at all).

Great care has been exercised to provide a transparent layout of
the code. Subroutine names were given names up to 31 characters
long, where the first 3 letters indicate the module and the rest is
a description of what is done in the routine. As an example we
present a listing of subroutine names in the ERD module (Electron
Repulsion Direct), which were given to the routines handling each
of the corresponding above steps in the scheme of the ERI block
(ab|cd) evaluation:

1),2) erd__set_abcd
3) erd__set_ij_kl_pairs
4) erd__e0f0_def_blocks

5a),5b) erd__e0f0_pcgto_block
erd__rys_roots_weights
erd__2d_coefficients
erd__2d_pq_integrals
erd__int2d_to_e0f0

5b) to 5e) erd__ctr_4index_block
erd__transpose_batch
erd__ctr_1st_half
erd__map_ijkl_to_ikjl
erd__ctr_2nd_half_update

6) erd__ctr_4index_reorder
7) erd__transpose_batch
8) erd__xyz_to_ry_abcd
9) erd__hrr_matrix

erd__hrr_transform
10),12) erd__spherical_transform
11),13) erd__move_ry

Special care has been taken to have the code well structured, such
that future developers will not have to spend too much time in getting
familiar with the code. Extensive comments (about 30% of the line
count) in each routine guide the user and developer about the steps
being performed. The argument section of each routine is written in
such a way that incoming arguments needed by the routine are well
separated from those which are calculated and returned back. This
adds legibility to the code and aids when additions and/or changes
to the code need to be performed.

Testing and Performance

A crucial aspect of every direct integral package is the time it takes
to evaluate the individual integral blocks. The present two-electron
integral code (module ERD) timings have been compared with
other well established two-electron integral packages implemented
in some widely distributed quantum mechanical software programs
like GAMESS27 and MOLCAS.28 Modified versions (no writing of
integrals to disk, no Schwarz screening of integrals, no evaluation of
one-electron integrals, etc...) of these codes have been compiled and
timing tests were performed on the C2H6 ethane molecule in its stag-
gered D3d configuration at a standard geometry of RCC = 1.54 Å,
RCH = 1.09 Å and all angles equal to the tetrahedral angle, using
a variety of different spherical basis sets. Table 3 shows the results
obtained in CPU seconds.

The timings are only a guide to the performance of our code and
should by no means be taken too literally. A rough margin error of
at least −10% should be applied to all the timings of the other pro-
grams. This allows for human error in successfully suppressing all
unwanted integral evaluation steps in the MOLCAS and GAMESS
program. The main reason for performing the timings is to show
that the ACES III integral package is not just merely another inte-
gral package created, but it is one that compares favorably with state
of the art programs of its kind. The integral code of MOLCAS is
one of the fastest integral codes available. The fact that the timings
are comparable with the MOLCAS integral package assures us of

Journal of Computational Chemistry DOI 10.1002/jcc

14 Flocke and Lotrich • Vol. 00, No. 0 • Journal of Computational Chemistry

Table 3. Complete ERI Evaluation CPU Timings in Seconds for Staggered
D3d Ethane C2H6 with Geometry RCC = 1.54 Å, RCH = 1.09 Å, and All
Angles = 109.47.

Basis ERD MOLCAS GAMES Basis size

CC-PVDZ 1.66 2.10 10.2 58
DZP 1.81 2.26 4.01 60
6-311++G** 3.98 5.15 13.9 86
ROOS ADZP 38.9 40.6 4210 100
AUG-CC-PVDZ 5.50 6.51 31.3 100
AUG-CC-PVTZ 114.3 125.0 280.5 230
AUG-CC-PVQZ 1682 2201 2540 436
NASA Ames 2135 2492 ≈3 days 290

All timings obtained on a IBM/RS 6000 machine.

no obvious design and implementation mistakes. One observation
that can be made, however, from the above table is the fact that the
GAMESS integral package slows down considerably when fully
contracted basis sets like ROOS ADZP are used. In this case, orders
of magnitude slower timings are observed. The slow performance
can be traced to the recalculation of primitive integrals for each con-
traction coefficient quadruplet contribution. As the basis sets contain
larger portions of uncontracted GTOs the timings become better, as
is seen for example for the AUG-CC-PVQZ basis set.

The same molecular system has also been used for gradient,
2nd and 3rd ERI derivatives. We were interested in the overhead
each derivative order creates when compared with evaluation of the
basic ERI integrals. Since many more variables arise when evaluat-
ing derivatives (which derivative component, which atomic center,
etc...), we have to use some kind of averaging in order to compare
with the basic integral timings. Consider the following pseudocode
for evaluating all the ERI gradients:

nblock = 0
nblockder = 0
CPU-total = 0
Loop over all ERI blocks a, b, c, d

nblock = nblock + 1
Loop over all x,y,z components
Loop over all distinct atomic centers

nblockder = nblockder + 1
Evaluate ERI gradient block (ab|cd)

− > CPU-block
CPU-total = CPU-total + CPU-block

End do
End do

End do
CPU = CPU-total * (nblock / nblockder)

If the innermost two loops over the components and the centers are
omitted and only basic ERI integrals are evaluated we would have
nblock = nblockder and variable CPU would contain the values of
the basic integral evaluation timings in Table 3. For the gradients,
CPU would thus measure how much more time on average it takes
to evaluate a derivative integral block. For the higher derivatives
we did the following. For the 2nd derivatives, we added an extra
x-component differentiation on the first atomic center in the block.

Table 4. Idem as Table 3 but Including 1st, 2nd, and 3rd Order Derivatives.

Basis ERD 1st 2nd 3rd Basis size

CC-PVDZ 1.66 3.29 4.40 5.32 58
DZP 1.81 3.66 5.05 6.24 60
6-311++G** 3.98 9.69 14.1 18.1 86
ROOS ADZP 38.9 98.3 156.2 207.8 100
AUG-CC-PVDZ 5.50 11.4 16.4 20.9 100
AUG-CC-PVTZ 114.3 172.3 236.3 283.3 230
AUG-CC-PVQZ 1682 2360 3137 3619 436
NASA Ames 2135 4098 5810 7007 290

For the 3rd derivatives, the same as for the 2nd but an additional y-
component differentiation on the second atomic center in the block.
Results are shown in Table 4, where we obtained average CPU values
in seconds for the 1st,2nd and 3rd derivatives. The basic integral
timings from Table 3 have also been added for comparison.

From the table, we conclude that evaluation of the 1st, 2nd, and
3rd order derivatives take about 2x, 3x, and 4x longer than evaluation
of the basic ERI integrals. Timings become more favorable in basis
sets with segmented contractions like for example for the AUG-
CC-PVQZ case. The longer timings for the derivatives can partly
be explained by the fact that the HRR at the contracted level can
no longer be fully used. Instead the HRRs have to be performed at
the 2D integral level, thus increasing the number of integrals to be
contracted. Overall the obtained overhead factors for the derivative
integrals are very satisfactory.

The ERD integral module, as well as the OED module compris-
ing all One-Electron Direct integrals and their open-ended n-th order
derivatives, has been extensively tested for accuracy and correctness,
and is currently being used by several groups running ACES III for
real systems calculations involving energy, gradient and Hessian
evaluations at Hartree-Fock, MP2 and CC level. All these calcula-
tions involve up to 2nd order derivatives. 3rd and 4th order derivative
integrals were tested by comparing with numerical differentiation
between integrals of one lower order over the entire range of dif-
ferentiation possibilities. Thus the 3rd derivatives were tested using
the 2nd derivative integrals, which we already knew were correct.
Once the 3rd derivative integrals passed the correctness test they
constitute the basis for the 4th derivative integral test. The 5th and
higher order derivatives have not been tested to their completion so
far, however, random selected integral blocks for testing showed no
errors so far.

Acknowledgments

The development of ACES III was largely supported by the US
Department of Defense’s High Performance Computing Moderniza-
tion Program (HPCMP) under two complementary programs: Com-
mon High Performance Computing Software Initiative (CHSSI),
project CBD-03, and User Productivity Enhancement and Tech-
nology Transfer (PET). The development of the integral package
was primarily supported by the U.S. Air Force Office of Scientific
Research under contract number FA-9550-04-1-01.

Journal of Computational Chemistry DOI 10.1002/jcc

Electronic Integrals and their Generalized Derivatives 15

References

1. Gill, P. M. W. Adv Quant Chem 1994, 25, 141.
2. Boys, S. F. Proc Roy Soc A (London) 1950, 200, 542.
3. Dupuis, M.; Rys, J.; King, H. F. J Chem Phys 1976, 65, 111.
4. King, H. F.; Dupuis, M. J Comput Phys 1976, 21, 144.
5. Rys, J.; Dupuis, M.; King, H. F. J Comput Chem 1983, 4, 154.
6. McMurchie, L. E.; Davidson, E. R. J Comput Phys 1978, 26, 218.
7. Obara, S.; Saika, A. J Chem Phys 1986, 84, 3963.
8. Schlegel, H. B. J Chem Phys 1982, 77, 3676.
9. Head-Gordon, M.; Pople, J. A. J Chem Phys 1988, 89, 5777.

10. Lindh, R.; Ryu, U.; Liu, B. J Chem Phys 1991, 95, 5889.
11. Schlegel, H. B.; Binkley, J. S.; Pople, J. A. J Chem Phys 1983, 80, 1976.
12. Dupuis, M.; King, H. F. In Geometrical Derivatives of Energy Surfaces

and Molecular Properties; Jorgensen, P.; Simons, J. D., Eds.; Reidel
Publishing Company: Dordrecht, 1986; p. 167

13. Lindh, R. Theor Chim Acta 1992, 85, 423.
14. Dupuis, M. Comput Phys Commun 2001, 134, 150.
15. Dupuis, M.; Marquez, A. J. Chem. Phys. 2001, 114, 2067.
16. Takashima, H.; Kitamura, K. Chem Phys Lett 2003, 377, 43.
17. Nakai, H.; Kobayashi, M. Chem Phys Lett 2004, 388, 50.
18. Wilf, H. S. Mathematics for the Physical Sciences; Wiley: New York,

2001; p. 80.

19. Golub, G. H.; Welsch, J. H. Math Comput 1969, 23, 221.

20. Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions;
Dover Publications: New York, 1968, p. 771.

21. Sack, R. A.; Donovan, A. F. Num Math 1971, 18, 465.

22. Wheeler, J. C. Rocky Mountain J Math 1974, 4, 287.

23. Gautschi, W. In Recent Advances in Numerical Analysis; deBoor, C.;
Golub, G. H., Eds.; Academic Press: New York, 1978, p. 45.

24. Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numer-
ical Recipies in C++, 2nd ed.; Cambridge University Press: New York,
2002, p. 163.

25. Wimp, J. Computation with Recurrence Relations; Applicable Math-
ematics Series; Pitman Advanced Publishing Program: Boston, MA,
1984, p. 82.

26. Lindh, R. In Encyclopedia of Computational Chemistry, Vol. 2; V. R.
Schleyer, P., Ed.; Wiley: Chichester, 1998, p. 1337.

27. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon,
M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.;
Windus, T. L.; Dupuis, M.; Montgomery, J. A. J Comput Chem 1993,
14, 1347.

28. Karlströn, G.; Lindh, R.; Malmqvist, P.-A.; Ryde, U.; Veryazov, V.;
Widmark, P.-O.; Cossi, M.; Schimmelpfennig, B.; Neogrady, P.; Seijo,
L. Comp Mat Sci 2003, 28, 222.

Journal of Computational Chemistry DOI 10.1002/jcc

