
ACES III Documentation: SIP Design

SIP Design

Overview

The parallel modules of ACES II are programs written in Fortran 77 and C++ using
POSIX Threads and MPI that provide a flexible environment to execute complex
algorithms involving very large data structures and multiple high-order tensor
contractions. The problem that spurred their development and design is the evaluation of
Coupled Cluster singles and doubles (CCSD) energies and gradients.

The design philosophy draws on the similarity with the architecture of an early
generation processor, for example the VAX 11/780. One thinks of the processor
executing a stream of machine instructions written in assembly language. Each
instruction takes a considerable amount of time, from a few processor cycles for an IF
test, to fifty or more cycles for a floating point multiply. This is in contrast to modern
micro processors that execute all instructions in one cycle and often execute multiple
instructions each cycle. Writing efficient programs then requires a careful scheduling of
instructions such that the amount of time that the processor must wait is minimized. This
can be achieved by scheduling reading from memory to start way before the data are
needed for e.g. a floating point operation, and by starting other operations while the
writing to memory of the results of an earlier operation is still in progress.

The CCSD data structures are huge. For the design, the data structures are not considered
as arrays of floating point numbers, but as arrays of blocks, each containing typically
10,000 floating point numbers. In the design, the algorithm is written in terms of block
operations, not operations on individual floating point numbers. As a result, even on
modern multi-GHz processors, every block operation takes a considerable amount of
time. Because each block is large, e.g. a contraction of two blocks, each a 4-index object,
over 2 indices to produce another 4-index object takes considerable time. Furthermore,
this time can be tuned by changing the basic block size. It then becomes feasible to
expect that every read from and write to some other task in the parallel program using
MPI communication can be tuned to be less than the time for a contraction. With careful
scheduling and pre-fetching of data, a large portion of all communication can be hidden
behind computation, resulting in favorable parallel performance of the program.

Because of this similarity, we call the primitive operations executed by the new ACES II
modules super instructions and we call the parallel program itself the Super Instruction
Processor or SIP.

The algorithm to be performed is expressed in a special purpose language, called Super
Instruction Assembly Language, or SIAL, pronounced “sail”.

SIP Components

Sep 1, 2007 1

ACES III Documentation: SIP Design

Logically, SIP has the following components:

1. A component coordinating the work to be done by all tasks; this component
executes in the master task during initialization;

2. A component for communication of basic data elements, blocks, between the
cooperating tasks, the most visible aspect of this component is the distributed
array;

3. A component for storing and retrieving large amounts of data, providing support
for the served arrays;

4. A component for executing basic chunks of work in the form of super
instructions; this component calls the communication and data storage
components when necessary.

SIP is a parallel MPI program that consists of multiple tasks. Some tasks are dedicated to
special functions, others are more general. To provide the necessary flexibility to tune the
performance of the SIP, each task runs multiple POSIX threads for communication in
addition to the main thread, which performs the coordination of all threads and executes
super instructions.

The IOCOMPANY

Tasks are grouped into companies, which perform a given function cooperatively. For
example, one company, called the iocompany, is dedicated to providing support for
served arrays. Each task has several threads, ready to receive messages from tasks in
other companies performing work on the algorithm. All data belonging to a served array
is divided into blocks and blocks are always received into or sent from the memory of
one of the tasks in the iocompany. The master task sets up tables designating which task
will hold which block of every array using a simple algorithm, so that no searching for
data blocks is necessary.

At a low priority, every task in the iocompany investigates the status of all data blocks in
memory, and when the pool fills up above some threshold, the low priority thread starts
to copy blocks to locally accessible disk storage. The algorithm is similar to that of
managing paging space in a modern operating system. Blocks that are often read or
changed regularly will remain in memory for quick access, whereas blocks that are used
infrequently migrate to disk. If a request for a block is made that is not resident in
memory, a delay will occur before the request completes, which is caused by the need to
restore the block from disk.

The iocompany also has the capability to compute blocks of integrals. If a request arrives
for a block and it is not found to be resident in memory or disk, the task assumes an
integral block is needed in direct mode, and it starts an integral computation, which will
be transmitted when the computation completes.

Other companies and platoons

Sep 1, 2007 2

ACES III Documentation: SIP Design

Other companies execute SIAL programs. All tasks in a company execute the same SIAL
program. Very complex algorithms may require the cooperation of multiple companies,
each executing a different SIAL program. The tasks in different companies can
communicate with each other through the iocompany by reading and writing served
arrays, for example. They can also communicate directly.

A company can be divided further into platoons. All tasks in one platoon hold one copy
of one or more distributed arrays. This allows optimization of data access as follows.
As all tasks in a company are processing data for some algorithm, they will need to read
from and write to one or more distributed arrays. Because the distributed arrays are
replicated in each platoon, communication between all tasks in the company can be
performed without any single task becoming a bottleneck. This will only work, of course,
if the size of the data and the number of tasks is such that enough local memory is
available in each task to hold the multiple copies of the same data.

Communication of distributed array data is performed as follows: Each task has one or
more threads running that are listening for requests. When a request is made the
necessary locks are acquired to ensure integrity of the data, and then the block is
asynchronously sent or received. While the communication is taking place, more requests
for other blocks can be processed. Multiple requests to read the same block are also
processed at the same time, thus reducing wait time for the client of the distributed
array.

Super Instruction processing

The activity of each task in all companies except the iocompany is controlled by an SIAL
program. It is a list of super instructions to be executed. The super instructions can
initiate communication, send or receive, or computation such as the tensor contraction of
a two blocks of data into a third block. The computation can take a significant amount of
time, depending on the block size. It is also possible that the instruction starts the
computation of a block of integrals.

As much as possible, the super instructions are executed asynchronously:
Communication operations are started and then control returns so that computation can be
performed. When the data has is really needed, the task checks whether the
communication instruction has completed successfully. The task can also look ahead in
the instruction list and start certain operations early. The purpose of this flexibility is to
try and maximize the hiding of communication delays behind computation work, thus
minimizing over all waiting times in the execution of the parallel program.

APPENDIX: IOCOMPANY components

 served arrays client
 | ^
 | |
 prepare request
 | |
 | |

Sep 1, 2007 3

ACES III Documentation: SIP Design

 v | server process
 comm block pool
 thrds
 <---> block struct <--->
 empty flag I/O
 copied flag thrds
 write lock | ^
 data | |
 | |
 write read (could be asynchronous)
 | |
 v |
 Unix buffer cache
 | ^
 v |
 disks

- the communication threads are the server front end and run at high
 priority, they are only blocked when all blocks in the pool are
 full and no blocks have the copy-to-disk-completed flag set to true.
- The I/O threads are the back end and run at low priority, they copy
 blocks to disk, which means make system requests to copy blocks
 to the buffer cache and the kernel will move them to disk when it
 needed.
- the block write lock is set whenever the front end updates a block
 with a prepare or the back end restores a previously deleted block
 from disk, and during that time all requests for the block are
 put in wait.

Sep 1, 2007 4

