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ABSTRACT 
A design pattern is considered in which a distributed memory, multi processor computer 
is viewed as an early generation processor. In such processors, each instruction operates 
on individual floating point numbers and consumes a variable yet significant number of 
cycles. In the design pattern, we consider the elementary data item for a modern parallel 
computer to be a block of many numbers. Each operation involves a significant amount 
of CPU work, since the operands and result are blocks. We also consider memory access 
operations to include the delays incurred sending blocks to remote nodes. By making all 
delays explicit and organizing the algorithm such as to provide sufficient work to make 
each operation take a measurable amount of time, a new paradigm for designing and 
optimizing data and floating point intensive algorithms emerges. The application of the 
design pattern to the construction of a parallel implementation of the Coupled Cluster 
Singles and Doubles energy and gradient calculation is discussed. The efficiency of 
developers and the performance of the created software are discussed. 

 

1. The super instruction design pattern 
 
Designing, writing and debugging programs that implement numerically intensive 
algorithms are demanding and labor intensive tasks. Trying to implement such algorithms 
on modern computer systems consisting of many CPUs connected by low-latency, high-
bandwidth switching networks is notoriously difficult. The problem that we are 
considering comes from the domain of Computational Chemistry. In computational 
chemistry, one of the problems is to determine the wave function of a many electron 
system where all the electrons are moving in the Coulomb forces from the nuclei. The 
Hartree-Fock method gives a single particle approximation, essentially the product of 
orbitals. To correct the wave function to describe the fact that the electrons repel each 
other, one needs to do a correlation calculation. The ultimate brute full method is CI 
(configuration interaction), but that is too cumbersome and not feasible for any but the 
smallest systems. The coupled cluster singles and doubles (CCSD) method1 gives a good 
result for a reasonable, but still large, effort. CCSD people write diagrams that look like 
Feynman diagrams from field theory. Each diagram is one term. There are many terms, 
resulting in very complex programs with large amounts of data and large numbers of 
operations to be performed.The first implementations of the energy2 and gradient3 
calculations using this method on serial computers took several man-years of effort. 
Several attempts have been made to write parallel implementations4,5 with varying 
success: Certain assumptions were made during the design and these turn out to limit the 
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range of applications that can be treated effectively with the implementation. Retuning 
the implementation to support the new application is very labor intensive. 
 
In our effort, we set out to build a more complex software system that would allow us, 
after completion of the code, to tune the performance to varying hardware platforms to a 
much greater extent than usual. To accomplish this design goal, we found it productive to 
set up a design pattern6 that exhibits the flexibility needed for obtaining reasonable 
performance on a wide range of problems executing on a variety of hardware 
configurations.  

1.1 Pattern inspiration 
The design pattern draws on the similarity with the architecture of an early generation 
processor, for example the VAX 11/780. The processor is executing a stream of machine 
instructions. Each instruction corresponds to a small program written in microcode and 
takes a considerable amount of time, ranging from a few processor cycles for a simple 
logical test, to tens of cycles for a floating point multiplication. Writing efficient 
programs for the early generation processor then requires a careful scheduling of 
instructions such that the amount of time that the processor must wait is minimized. 
Although each instruction takes finite time and the time taken by CPU operations and 
memory operations are of similar magnitude, there is opportunity to keep the CPU busy 
while memory access is in progress. This can be achieved for example by scheduling read 
operations from memory to start a sufficient number of cycles before the data is needed 
for a CPU operation, and by starting new CPU operations while the write operation to 
memory of the results of the previous CPU operation is still in progress. 
 
This is in contrast to modern micro processors that execute all instructions in one cycle 
and often execute multiple instructions in parallel units in each cycle. In this case the 
CPU operations are all significantly quicker than any memory operations, and writing 
efficient programs requires focusing on keeping the CPU busy. This might be fine for 
serial algorithms, but does not extend naturally to parallel algorithms. Even the fastest 
switches, such as the one used in the SGI Altix NUMA architecture, are still too slow. 

1.2 Description of pattern 
The design pattern must then consider the entire parallel computer system as if it were a 
single VAX 11/780 system with multiple CPUs. Each CPU performs work as part of the 
parallel program, which in our case is an MPI MIMD program and all tasks have data 
which is stored in the system RAM. In the pattern, all operations must be considered as 
time consuming. No operation is considered free or so fast that its execution time is 
negligible. In this way the VAX RAM can be a representation of the real systems 
memory which may be shared memory or distributed memory. The access time to RAM 
takes into account message latencies and bandwidth constraints. 
 
To make the pattern work, the problem must allow for the organization of the data into a 
structure of “atomic data items” such that the algorithm can be written in terms of a set of 
“atomic operations” on the “atomic data items”. Then the application can be viewed as an 
assembler program for the VAX 11/780 and tuning the performance of the application 
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becomes tuning the microcode of the VAX 11/780 instructions. Instead of trying to make 
the switch as fast as the CPU, we feed every CPU in the system “atomic data items” that 
are so large that every “atomic operation” takes a time comparable to the delays caused 
by transmitting the data from remote memory. In other words, we make the CPU 
operations as time consuming as the (distributed) memory access operations. 
 
Because of this similarity, we call the primitive operations executed by the parallel 
computer super instructions and we call the parallel program implementing the 
instructions the super instruction processor or SIP. The parallel program is comparable to 
the microcode. The algorithm to be performed is expressed in a special purpose language, 
called super instruction assembly language, or SIAL (pronounced “sail”). 
 
To apply the pattern in a design requires building a compiler for SIAL. In a disciplined 
software engineering project, it is possible to implement the SIAL functionality in a class 
library. But then there is no hard boundary between SIAL and microcode, which may 
jeopardize tuning efforts. In our implementation, we opted for a real compiler. It 
generates binary code, machine instructions, for the super instruction processor, which 
reads the instructions and executes them. The binary code consists of tables with 
numbers. The main table is the instruction table with instruction codes and operand 
addresses. The operand addresses are entries in data descriptor tables, which could be 
array tables or index tables. Some operations are like multiplications, which are compute 
intensive. Other instructions perform DO loop control, some for serial loops and others 
distributed loops. 
 
For example, in our application, the atomic data item is a sub-block of a 4-dimensional 
matrix. The atomic operations are tensor contractions of the blocks. There are several 
such instructions to with different possibilities of what index of the first operand to 
combine with what index of the second operand and what index to map into which result 
index. If the instruction operates on a block, the SIP determines whether the block is 
local; if it is not a request is made from the owner task of the block. The SIP may look 
ahead and request several blocks that it expects will be needed in the next iteration. It can 
start a multiplication operation for which all operands are available. The programmer of 
SIAL does not know where the block resides, local or on a remote node of the real 
system, in the pattern the blocks just reside in RAM, which may be fast or slow to access.  
 
The super instruction processor itself is a parallel MPI program and it is MIMD. Each 
MPI task executes the same super instructions program, but may not be at the same place 
in the program. There is no instruction level synchronization between the executing 
CPUs. 
 
The SIP has no registers, but a stack. All RAM is divided into blocks that are big enough 
to hold any block that may ever come up. (This leads to an issue with waste if there is 
large variation in block size.) The SIP uses these blocks as a stack. It is important to 
make sure the block size has the correct relation to the cache of the microprocessor used 
to get optimal performance. 
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1.3 Applying the pattern 
The use of the super instruction design pattern is somewhat different from object oriented 
programming with blocks, because the pattern does not only address the design of the 
parallel program, but also how to run and tune it. There are two levels of programming on 
a VAX: Application programmers focus on the algorithm and write e.g. in C or Fortran. 
System engineers write microcode to speed up floating point operations and read and 
write to RAM and disk. 
 
The pattern we advocate to help build parallel HPC applications also defines two levels: 
one for the algorithm and one for the execution. The programmers writing in SIAL only 
have the capability to operate on blocks. The size of the blocks is not defined or 
accessible in that language. It is determined at run time only. The programmers writing 
SIP use C or C++ or Fortran and they try to write these operations as efficiently as 
possible. Users can execute the application on a single CPU, or on multiple CPUs, with 
shared memory or distributed memory, with a slow switch or with a fast one. The size of 
the blocks is one of the parameters the SIP programmers can work with to get efficient 
execution of the same algorithm on such widely different architectures.  
 

The hard part is indeed the recognition of what we called an "atomic data item" on which 
one can operate meaningfully with "atomic instructions". The reading/writing and 
sending/receiving instructions then follow immediately. In our case blocks of the tensors 
are the atomic data, and contractions the atomic instructions.  
 
 
Note that the pattern requires that the programmer cannot do anything to parts of a block. 
Every problem area probably has a few of the "bit operation" requirements. Ours does. So 
we have to introduce a few special instructions to do this. For the pattern to work well, 
there should be few of these and they should be called sparingly. 
 
One thing to help in this hard part is to look at the problem through "fuzzy glasses", i.e. 
look at the large scale things in the problem. For example, this would be a useful 
approach to apply this pattern in many modern multiscale simulations. 
 
The pattern will not work well, if the data morphs a lot during the computation. If it 
morphs in stages, the pattern may work inside the stages. But if the data must be operated 
on as a list in loop 1, and a matrix in loop 2, and something else in loop 3, then there is no 
way to make it a useful "atomic data" item. 
 
The standard patterns6 of data distribution, client/server, etc can be applied to the 
problem at the microcode level and at the SIAL level.  
 

2. Analysis of the CCSD method 
 
The CCSD data structures scale like N4 and the number of operations scales like N6 (N 
being the user’s problem size). The method uses an iteration scheme to solve a set of 
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nonlinear equations. As an example, consider the energy only calculation. The variables 
are the cluster amplitudes T. At each step, a new set of amplitudes R are constructed. 
When the difference between the old and the new amplitudes is smaller than some 
convergence criterion, the equation is considered solved and the last set of amplitudes are 
taken as the solution. The expressions for the new amplitudes in terms of the old 
amplitudes are very involved and the number of amplitudes is large and therefore 
iteration takes a significant amount of time and memory. A typical CCSD calculation 
requires 10 to 15 iterations to converge. One of the most time and memory consuming 
terms is 
 Rab

ij = ∑cd V
ab

cd T
cd

ij 

Here the indices i and j range from 1 to 20 for small systems and up to 100 for midsize 
systems, with the indices a, b, c and d ranging from 1 to 100 and up to 1,000, 
respectively. This means that there are 20x20x100x100= 4 106 to 100x100x1,000x1,000 
= 1010 T amplitudes and 108 to 1012 “two-electron integrals” V. This is 32 MB to 80 GB 
for T and 800 MB to 8 TB for V. 
 
The integrals can be computed in advance, but for many chemical systems there are too 
many integrals to store so they are computed as needed. The algorithm to compute the 
integrals is itself quite complex and the computation of one integral usually takes a 
millisecond or more. However, the evaluation of integrals involves recursion among 
several related integrals and obtaining a group of integrals at once is far more efficient 
than computing them individually. 
 
The use of the pattern implies that the data structures should not be viewed as arrays of 
floating point numbers, but as lists or arrays of blocks. With the above examples a good 
block is made by dividing all index ranges into segments of length 10 to 50. Then blocks 
of T and V each contain 10,000 to 6,250,000 floating point numbers, or 80 KB to 50 MB. 
 
Next the pattern calls for the algorithm to be written in terms of block operations, not 
operations on individual floating point numbers. This means that the double loop above 
becomes a loop over block contractions. We define the contraction of one block of V 
with one block of T, which produces one block of R, as one contraction instruction. This 
instruction can be implemented as a DGEMM and involves 2x1003 to 2x2,5003 floating 
point operations. On a 1 GHz processor, this operation takes from 2 milliseconds to 16 
seconds. The pattern also calls for computing integrals in blocks, which, as discussed 
above, is natural for their evaluation anyway. We therefore define computation of one 
block of integrals to be a single super instruction. The time to execute this integral 
instruction is comparable to the time to perform one block contraction of V with T. 
 
Finally the pattern suggests thinking of all distributed memory of the parallel computer as 
accessible by read and write super instructions and include the communication delay as 
part of the time needed to complete the instruction. With a switch fabric capable of 
transmitting at 100 MB/s, it takes less than 1 ms to .5 sec to transmit one block of T or V. 
In the case of V the latency of the switch, from 100 microseconds for Gigabit Ethernet to 
1 microsecond for Infiniband, is not relevant. 
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The time for each super instruction can be tuned by changing the segment size and thus 
the block size. It then becomes reasonable to expect that every read from and write to 
some other task using MPI communication can be tuned to be less than the time for a 
block operation. With careful scheduling and pre-fetching of data, a large portion of all 
communication can be hidden behind computation, resulting in favorable parallel 
performance of the program. In the example above of segment sizes of 10 to 50, the time 
to execute a computation super instruction and the time to execute a memory super 
instruction rage from similar to an order of magnitude different. It is likely that the 
segment size can be reduced in the larger example without jeopardizing the hiding of 
communication behind computation. 
 

3. Implementation of a super instruction processor 

3.1. SIP components 
 
Logically, SIP has the following components: 

1. A component coordinating the work to be done by all tasks; this component 
executes in the master task during initialization; 

2. A component for communication of basic data elements, blocks, between the 
cooperating tasks, the most visible aspect of this component is the distributed 
array; 

3. A component for storing and retrieving large amounts of data, providing support 
for the served arrays; 

4. A component for executing basic chunks of work in the form of super 
instructions; this component calls the communication and data storage 
components when necessary. 

 
SIP is a parallel MPI program that consists of multiple tasks. Some tasks are dedicated to 
special functions, others are more general. To provide the necessary flexibility to tune the 
performance of the SIP, each task runs multiple POSIX threads for communication in 
addition to the main thread, which performs the coordination of all threads and executes 
super instructions. Tasks are grouped into companies, which perform a given function 
cooperatively.  

3.2. The I/O company 
 
One company, called the I/O company, is dedicated to providing support for served 
arrays. Each task has several threads, ready to receive messages from tasks in other 
companies performing work on the algorithm. All data belonging to a served array is 
divided into blocks and blocks are always received into or sent from the memory of one 
of the tasks in the I/O company. The master task sets up tables designating which task 
will hold which block of every array using a simple algorithm, so that no searching for 
data blocks is necessary.  
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At a low priority, every task in the I/O company investigates the status of all data blocks 
in memory, and when the pool fills up above some threshold, the low priority thread 
starts to copy blocks to locally accessible disk storage. The algorithm is similar to that of 
managing paging space in a modern operating system. Blocks that are often read or 
changed regularly will remain in memory for quick access, whereas blocks that are used 
infrequently migrate to disk. If a request for a block is made that is not resident in 
memory, a delay will occur before the request completes, which is caused by the need to 
restore the block from disk. 
 
The I/O company also has the capability to compute blocks of integrals. If a request 
arrives for a block and it is not found to be resident in memory or disk, the task assumes 
an integral block is needed in direct mode, and it starts an integral computation, which 
will be transmitted when the computation completes. 
 

3.3 Compute companies and platoons 
 
Other companies, called compute companies, execute SIAL programs. All tasks in a 
company execute the same SIAL program. Very complex algorithms may require the 
cooperation of multiple companies, each executing a different SIAL program. The tasks 
in different companies can communicate with each other through the I/O company by 
reading and writing served arrays, for example. They can also communicate directly. 
 
A company can be divided further into platoons. All tasks in one platoon hold one copy 
of one or more distributed arrays. This allows optimization of data access as follows. As 
all tasks in a company are processing data for some algorithm, they will need to read 
from and write to one or more distributed arrays. Because the distributed arrays are 
replicated in each platoon, communication between all tasks in the company can be 
performed without any single task becoming a bottleneck. This will only work, of course, 
if the size of the data and the number of tasks is such that enough local memory is 
available in each task to hold the multiple copies of the same data. 
 
Communication of distributed array data is performed as follows: Each task has one or 
more threads running that are listening for requests. When a request is made the 
necessary locks are acquired to ensure integrity of the data, and then the block is 
asynchronously sent or received. While the communication is taking place, more requests 
for other blocks can be processed. Multiple requests to read the same block are also 
processed at the same time, thus reducing wait time for the client of the distributed array. 
 

3.4 Super instruction processing 
 
The activity of each task in all companies, except the I/O company, is controlled by a 
compiled SIAL program stored in a super instruction object file. It is a list of super 
instructions to be executed. The super instructions can initiate communication, i.e. send 
or receive, or do computation (such as the tensor contraction of two blocks of data into a 
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third block). The computation can take a significant amount of time, depending on the 
block size. It is also possible that the instruction starts the computation of a block of 
integrals. 
 
As much as possible, the super instructions are executed asynchronously: 
Communication operations are started and then control returns so that computation can be 
performed. When the instruction that needs the data start executing, it first checks that the 
communication instruction has completed successfully and it will wait (stall the SIP) if 
the communication is still in progress. The task can also look ahead in the instruction list 
and start certain operations early. The purpose of this flexibility is to try and maximize 
the hiding of communication delays behind computation work, thus minimizing over all 
waiting times in the execution of the parallel program. 
 

4. Conclusion 
 
The super instruction design pattern proved to be a very effective tool in the design of the 
notoriously complex problem of implementing the CCSD energy and gradients 
computation on parallel computers. The performance and the scaling of the parallel 
software designed are competitive with the code produced using traditional style MPI 
programming. 
 
One of the design goals was to have software that is more flexible for tuning to varying 
hardware configurations and it is our experience that this goal was achieved. The SIP has 
been instrumented with detailed timing and memory use reporting capabilities, thus 
allowing us to gather detailed statistics from every run. Because of the relatively heavy 
nature of super instructions, the overhead of this reporting facility is negligible. 
 
One surprising outcome is the dramatic reduction in developer time needed to implement 
alternative algorithms. Writing SIAL code from CCSD formulas turned out to be simpler 
than writing Fortran code and our programmers often implemented several algorithms to 
compare performance and to debug them. 
 
It has been shown5 by the Tensor Contraction Engine team that automatic code 
generation is very effective for implementing complex algorithms. Our design of SIAL 
was done with automatic code generation in mind. All SIAL programs we have produced 
so far have been written by a person. We have the code generator ready and we are 
investigating a more customized approach than the TCE, where the automatic code 
generator produces SIAL code that is tuned to the specific sizes of each chemical system, 
or family of systems. 
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