
ACESIII: Parallel implementation of
coupled-cluster methods, a practical

perspective
• Design philosophy
• Basics of SIAL (Super Instruction

Architecture Language)
• Applications/Method implemented

- small selection
• Conclusions/Improvements

Design Philosophy

• Two fundamental principles

1. Parallel Computer ‘super’ serial
computer

2. Program execution is separated from
the application specific algorithmic design

SIA design

High level

concepts

Data structures

algorithms

Super instruction
Assembly language

SIAL (scf.sial)

Low level

communication

Input/Output

Super Instruction
Processor

SIP (xaces3)

input output

Problem Performance

Parallel Computer

Parallel computer
Data

Serial computer
Block of data

Serial computer
Block of data

Serial computer
Block of data

Data element

Number

Block

Advantages

• Block operations take time(dependent on
block size -> tunable)

• Message ‘hiding’ possible

• Flexibility in scheduling tasks

Simplicity: Algorithm/Execution
separation

• Design a ‘simple’ language to express the
algorithm (SIAL)

• Details of execution determined at a lower
level

• A precise boundary exists

Benefits

• More efficient use of expertise

• More efficient tuning

• Easier extension to other disciplines

SIAL: THE BASICS
• Principles

- Index segmentation

- Blocking of arrays

- Parallelization

- Anomalies

• Specific

- Standard operations
- matrix mult
- addition
- ect…

- ‘Non standard’
operations
- computing integrals

Segmentation

• The range of each index is divided into a
relatively small number of segments which
are determined by defining a segment
size.

• There can be different segment sizes for
different types of indices.

BLOCKS

• Arrays are decomposed into blocks the
size of which is determined by the index
segments.

• Blocks are the basic entities which
operations are performed on/with.

• Blocks should be small so that many of
them fit into memory.

1 10 30 4120

1A

As

41

• Array(Blocked)

• As (N,N) = A(N,N)

• N=4

• Array

• A(n,n)

• n=41

Number of segments = 4

Number of blocks = 16

1

10

20

41

30

1 10 20 30 41

A(1,1) A(1,2) A(1,3) A(1,4)

A(2,1)

A(3,1)

A(4,1)

A(2,2)

A(3,2)

A(4,2)

A(2,3)

A(3,3)

A(4,3)

A(2,4)

A(3,4)

A(4,4)

Arrays

• Static

• Local
• Temp

• Distributed

• Served

• Replicated on each
processor

• Partially replicated
• Only exists within the

scope it is used
• Exists in its entirety in

distributed memory
• Exists on the disk

Parallelization

• The main feature is the PARDO which
determines how the work is to be
distributed among the processors.

• ‘Horizontal’ load balancing: If the work is
not evenly distributed keeps all processors
busy.

• ‘Vertical’ load balancing: Allows multiple
PARDO loops to be executed
simultaneously.

Example
• X(a,b,i,j) = c,d V(a,b,c,d)*T(c,d,i,j) indeces
• X(A,B,I,J) = C,D V(A,B,C,D)*T(C,D,I,J) Block

PARDO A, B, C, D
REQUEST V(A,B,C,D)
DO I
DO J

REQUEST T(C,D,I,J)
X(A,B,I,J) = V(A,B,C,D)*T(C,D,I,J)

Parallelization

Anomalous behavior

• The self consistent field method(SCF)
- most efficient using specially designed
super instructions

- Fock build implemented
• CCSD(T) run on > 30,000 processors

- Uses specialized parallelization
techniques not used elsewhere

Applications: Range of methods
implemented

• Rank method according to
1. Computational cost (Scaling)
2. Data requirements
3. Communication requirements

a) input(reading)
b) output(writing)

4. Scale of 1-4 (small – large)

Implemented methods shown

Method Scaling Data Comm.

SCF 1(N^4) 1 2

MP2 gradient 2(N^5) 2 3

CCSD 3(N^6) 4 4

CCSD(T) 4(N^7) 3 1

Computational Details

• Method
• Molecule
• Number of basis

functions
• Number of electrons
• Number of atoms

• SCF(UHF)
• RDX

• 1005
• 114
• 21

Computational Details

• Method
• Molecule
• Number of basis

functions
• Number of electrons
• Number of atoms

• SCF(UHF)
• (H2 0)21 H+

• 1232
• 210
• 64

Computational details of MP2
gradient computation

Method MP2 gradient MP2 gradient

Molecule RDX HMX

Number of bf’s 1005 1340

Number of
electrons

114 152

Number of
atoms

21 28

Computational details of CCSD
computation

Method CCSD CCSD

Molecule RDX HMX

Number of bf’s 1005 924

Number of
electrons

114 152

Number of
atoms

21 28

Computational details of CCSD(T)
computation

Method CCSD(T) CCSD(T)

Molecule RDX HMX

Number of bf’s 372 496

Number of
electrons

114 152

Number of
atoms

21 28

Computational Details

• Method
• Molecule
• Number of basis

functions
• Number of electrons
• Number of atoms

• CCSD(T)
• RDX

• 1005
• 114
• 21

CONCLUSIONS

• The AcesIII framework has allowed many
quantum chemistry codes to be written in
parallel with good-excellent scaling.

• The separation of efficiency/algorithmic
aspects leads to a more productive
programming environment.

• The generality of SIP/SIAL allows for other
disciplines to use AcesIII.

Improvements

• Subindex capability: segments can be
further subdivided in to subindeces.

• Data mining: different sections of code can
be assigned a different set of processors
to run on.

• High dimension arrays(<=10) compound
indices NOT TRIVIAL

	ACESIII: Parallel implementation of coupled-cluster methods, a practical perspective�
	Design Philosophy
	Slide Number 3
	Parallel Computer
	Advantages
	Simplicity: Algorithm/Execution separation
	Benefits
	SIAL: THE BASICS
	Segmentation
	BLOCKS
	Slide Number 11
	Slide Number 12
	Arrays
	Parallelization
	Example
	Anomalous behavior
	Applications: Range of methods implemented
	Implemented methods shown
	Computational Details
	Slide Number 20
	Slide Number 21
	Computational Details
	Slide Number 23
	Slide Number 24
	Computational details of MP2 gradient computation
	Slide Number 26
	Slide Number 27
	Computational details of CCSD computation
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Computational details of CCSD(T) computation
	Slide Number 33
	Slide Number 34
	Computational Details
	Slide Number 36
	Slide Number 37
	CONCLUSIONS
	Improvements

